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Multineuronal Firing Patterns
in the Signal from Eye to Brain

to address, because three important components must
all come together.

First, one must record from many neurons simultane-
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Research Department
ously to even get access to their firing patterns. UntilBell Laboratories
recently this was a formidable obstacle, but technicalLucent Technologies
advances over the last decade have made multielec-Murray Hill, New Jersey 07974
trode recording increasingly widespread (Buzsaki et al.,2 Molecular and Cellular Biology Department
1989; Wilson and McNaughton, 1993; Kovacs et al.,Harvard University
1994; Meister et al., 1994; Nordhausen et al., 1996; DellaCambridge, Massachusetts 02138
Santina et al., 1997; Chapin and Nicolelis, 1999).

Second, one must recognize those firing patterns that
are plausible candidates for concerted coding. A brute

Summary force inspection of every possible combination of spikes
among N neurons is prohibitive for even moderate N

Population codes in the brain have generally been (Gerstein and Aertsen, 1985). Many studies have so far
characterized by recording responses from one neu- been limited to pairwise comparisons among neurons,
ron at a time. This approach will miss codes that rely for example through analysis of crosscorrelation func-
on concerted patterns of action potentials from many tions. Identifying higher-order correlations among multi-
cells. Here we analyze visual signaling in populations ple neurons is a statistical challenge (Gerstein et al.,
of ganglion cells recorded from the isolated salaman- 1978; Gerstein and Aertsen, 1985; Abeles and Gerstein,
der retina. These neurons tend to fire synchronously 1988; Frostig et al., 1990). We have now developed an
far more frequently than expected by chance. We pres- efficient algorithm that can detect concerted activity of
ent an efficient algorithm to identify what groups of arbitrarily large groups of neurons while circumventing
cells cooperate in this way. Such groups can include the combinatorial explosion of the brute force approach.
up to seven or more neurons and may account for Finally, one must be able to interpret what messages
more than 50% of all the spikes recorded from the are conveyed by neural firing, to test whether concerted
retina. These firing patterns represent specific mes- firing patterns play a special role. The opportunities for
sages about the visual stimulus that differ significantly this are greatest at the sensory or motor periphery of
from what one would derive by single-cell analysis. the nervous system, simply because the variables of

interest to these neurons—sensory stimuli or muscle
movements—are directly observable. Here we analyzeIntroduction
how ganglion cells in the retina encode visual stimuli.
The output of 50 or more of these neurons can be re-If a neuronal population contains N spiking cells, how
corded simultaneously with an electrode array, whilediverse is the set of possible messages these neurons
visual stimuli are projected onto the photoreceptor layercan convey by their firing? The answer depends on the
(Meister et al., 1994). The goal is to determine whethercoding scheme used to represent the messages. For
concerted patterns of action potential firing by theseexample, in the classical “labeled line” conception of
neurons contribute to the representation of visual input.sensory coding, the meaning of a spike is determined

Prior studies in several species have shown thatentirely by the identity of the neuron firing the spike,
nearby retinal ganglion cells have a strong tendency toregardless of the activity in other neurons. In that case,
fire in approximate synchrony (Arnett, 1978; Arnett andeach neuronal spike train represents an independent
Spraker, 1981; Johnsen and Levine, 1983; Mastronarde,channel of communication, and the number of such
1989; Meister et al., 1995; Meister, 1996; Brivanlou etchannels conveyed by the population grows proportion-
al., 1998; DeVries, 1999; Usrey and Reid, 1999). Pairwiseally with N. Alternatively, one might imagine that the
correlation functions between two spike trains showedfiring of one neuron changes the meaning of spikes from
that this synchrony occurs on three different time scalesanother neuron. In the extreme case, each pattern of
(Mastronarde, 1989; Brivanlou et al., 1998). Pharmaco-joint activity among N neurons has a different meaning;
logical analysis in the salamander retina suggested syn-

then the total number of distinct messages grows expo-
aptic circuits that might produce these different modes

nentially with N. Thus, a distributed code that employs
(Brivanlou et al., 1998). Electrical gap junctions likely

the concerted activity of multiple neurons would enjoy couple pairs of ganglion cells that fire with tight syn-
much greater representational power than a scheme in chrony (delays �1 ms). Shared excitation from an ama-
which individual neurons transmit messages indepen- crine cell, again via electrical junctions, probably in-
dently. This comes at a cost of more action potentials, duces synchrony on an intermediate time scale (10–25
since any given message may require firing by multiple ms). Shared photoreceptor input conveyed through di-
neurons rather than by a single cell (Meister, 1996). Do vergent interneuron pathways via chemical synapses
real neurons encode information with such a concerted leads to broad synchrony (40–100 ms) between two gan-
scheme? This fundamental question has been difficult glion cells.

Although such correlations alone are not evidence for
a concerted code, they merit further study because they*Correspondence: meister@biosun.harvard.edu



Neuron
500

often showed cases where many cells fired all at the
same time (Figure 1A). This suggests that the pairwise
correlations (Figure 1B) are merely the trace of synchro-
nization among larger groups of neurons. To better un-
derstand synchronized activity, one would like to find
such groups of cells that fire together more often than
expected by chance, and that also do so frequently
enough to contribute substantially to visual signaling.

The search for such stereotyped patterns has a close
connection to data compression (Storer, 1988). Sup-
pose, for example, that a particular group of cells always
fired together. Then one could simply replace all their
spike trains in the data set by a single spike train, without
loss of information. This would yield a more compact
representation of the neural recordings. The algorithm
we used to find firing patterns operates on this same
data compression principle (Figure 2A and Experimental
Procedures). It searches for a pair of cells that often fire
together and recodes those events in a new symbolic
spike train, using a single spike for each pair of the
original spikes. Then, the same procedure repeats on
the new data set, including the symbolic spike train.
After each round of iteration, fewer spikes are needed to
represent the data, and from the amount of compression
one can evaluate the significance of the most recently
identified firing pattern (Figure 2B). This requires not
only that the pattern occur frequently, but also that it
occur more frequently than expected (Experimental Pro-

Figure 1. An Example of Three-Way Correlations among Retinal cedures). Iteration stops when no further compression
Ganglion Cell Spike Trains is possible. One then simply evaluates all symbolic spike
(A) Brief segment of spike trains from three salamander retinal gan- trains created by the algorithm (Figure 2B) to see what
glion cells recorded in darkness. groups of neurons they represent.
(B) Pairwise crosscorrelograms with a sharp central peak show that The procedure’s principal strength is that it can find
each pair of cells has a tendency to fire synchronously. Yet, this

arbitrarily large groups of coordinated neurons—bypairwise analysis misses the frequent triplets of spikes that occur
combining various symbolic spike trains—while requir-synchronously in all cells, as seen on direct inspection of (A).
ing only a pairwise comparison of objects in each round
of iteration. This avoids the dreaded combinatorial ex-
plosion, because the computational effort scales onlymight form the basis for such a scheme. We begin by
quadratically with the number of neurons. A corollarytesting whether these correlations are limited to pairwise
is that the algorithm will recognize a large group ofinteractions among ganglion cells or extend over larger
synchronized neurons only if some smaller subgroupgroups. To do this, we introduce an information-theo-
was also deemed to be significant. In this sense, theretic algorithm that can identify arbitrarily large groups
method is conservative. Another important aspect isof cells engaged in concerted firing. This allows us to
that the assignment of cells to patterns is not exclusive:quantify the prevalence of concerted activity and to de-
one neuron can participate in several different groupstermine which firing patterns are candidates for a con-
(Figure 2B). This emerged as a useful feature, becausecerted code. We then inspect what messages these
such behavior occurs frequently in the retinal outputfiring patterns convey about the visual stimulus, and
signals.show that these differ greatly from what one would ex-

pect if ganglion cells acted independently. Thus, groups
of ganglion cells appear to engage in a concerted code Synchronized Firing in the Retina

We applied this method to search for synchrony in spikefor vision, and their output cannot be fully deciphered
without distinguishing between synchronous and non- trains of retinal ganglion cells from tiger salamanders

and rabbits. Synchrony between two spikes was definedsynchronous activity.
as a time delay �25 ms. This choice was made specifi-
cally to capture the “intermediate width” correlationsResults
among ganglion cells, which are the most prominent
form of synchrony and are thought to arise in the innerAn Algorithm to Find Groups

of Synchronized Neurons retina (Mastronarde, 1989; Brivanlou et al., 1998). Ini-
tially, we inspected spontaneous activity in darkness.As reported previously (Mastronarde, 1989; Brivanlou et

al., 1998; Usrey and Reid, 1999), pairs of nearby retinal Our algorithm identified many groups of cells that fired
synchronously. To quantify the prevalence of this con-ganglion cells had a strong tendency to fire in synchrony,

even when recorded in complete darkness (Figure 1). certed firing, we determined the fraction of all recorded
spikes that occurred in multineuron firing patterns. InDirect inspection of the spike trains in such experiments
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Figure 2. An Algorithm to Detect Multineu-
ronal Firing Patterns

(A) Summary of the procedure. Top: sche-
matic spike trains from four neurons (A, B,
C, and D). Time runs left to right, divided in
discrete bins. Middle: in the first round, the
algorithm recognizes that cells A and B often
fire in the same time bin and encodes each
such pair of spikes with a single spike from
a newly created symbolic cell AB. The events
where either A or B fires alone are retained
by the symbols AB� and A�B. Bottom: in the
second round, the algorithm recognizes that
symbols AB and D often occur synchronously
and encodes these events with a single spike
from symbolic cell ABD. This procedure con-
tinues until no more combinations can be
found that satisfy the information theoretic
criterion of significance.

(B) A graph illustrating progression of the iterative search procedure on a subset of retinal ganglion cell spike trains (salamander, darkness).
Each horizontal line corresponds to a real cell or symbolic cell. Each vertical line indicates the combination of the two cells marked by a dot
into a new symbol. Its horizontal offset indicates how much this definition contributed to compressing the data set, as a fraction of its original
size. Arrows mark the identification of the first synchronized group containing three cells (the triplet of Figure 1) or four cells.

various retinae this fraction was 16% (rabbit, 16 re- expected, whereas the typical synchronous triplet oc-
curred �100 times more frequently than expected. Forcorded cells), 17% (salamander, 23 cells), 43% (sala-

mander, 44 cells), and 60% (salamander, 39 cells), and some triplets this ratio was 103 or more, and generally
the correlation index was somewhat stronger under vi-it increased the more ganglion cells were recorded by

the electrode array. These numbers likely underestimate sual stimulation. As suggested by the example in Figure
1, the strength of correlation among groups of three cellsthe actual contributions of activity in multineuronal firing

patterns. First, the electrode array records from only a was not simply explained by the underlying pairwise
correlations: Triplets of spikes typically occurred 10fraction of the ganglion cells in its vicinity (�15%; Meis-

ter et al., 1994), leading to a systematic underestimate times more frequently than expected, assuming that the
most significant pair and the single cell composing theof the size of groups, as some of the partners in the

group may not be recorded (Experimental Procedures). triplet fired independently (Figure 3, inset).
Altogether, synchronous firing seems to account forFurther, the search algorithm is not exhaustive and may

have missed some spiking groups even among the cells half the retinal output or more, and it is clearly distinct
from chance coincidences of spikes. Thus, it is worthwhose activity we did record. Thus, the results pre-

sented here are conservative estimates. studying these patterns further.
To estimate the significance for the identified firing

patterns, we measured how frequently a pattern ap- Properties of Synchronous Spiking Groups
As an example, we will examine in depth the responsespeared compared to the frequency expected if the par-

ticipating cells were all firing independently of each in a representative population of 44 salamander gan-
glion cells, whose activity was recorded first in darknessother. The “correlation index” (Meister et al., 1995) is the

ratio between the observed frequency of synchronous and then under visual stimulation with a randomly flick-
ering checkerboard (Meister et al., 1994, 1995). Manyfiring and that expected by chance (Experimental Proce-

dures). Its distribution is shown in Figure 3 for synchro- synchronized groups were identified in this population:
143 groups during spontaneous firing in darkness, andnous groups of size 2 and 3. The typical synchronous

spike pair occurred �10 times more frequently than 99 groups under visual stimulation. Groups of two cells

Figure 3. Strength of the Correlation in Spike
Pairs and Triplets from Salamander Retina

A cumulative histogram of the correlation in-
dex, the ratio of the number of concerted ac-
tion potentials from a group to the number
expected by chance if the member cells fired
independently of each other (Equation 10);
note the logarithmic axis. Inset: the ratio of
the number of triplets ABC to the number
expected by chance if the pair AB and the
cell C fired independently of each other (see
Experimental Procedures).
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Figure 4. Summary Statistics of Synchronous Groups in a Ganglion Cell Population from Salamander Retina

(A) Histogram across groups of the number of cells in the group, observed in darkness (solid bars) or under stimulation with a flickering
checkerboard (shaded bars).
(B) Histogram across cells of the number of groups in which a cell participates.
(C) Histogram across cells of the number of partners with which a cell participates in groups.
(D) The fraction of spikes fired in groups for each cell, with the value under flicker stimulation plotted against the value in darkness.

accounted for less than half the firing patterns, and among ON cells only 10%. Apparently, certain types of
retinal ganglion cell are less influenced by the laterallarger groups were observed with decreasing frequency,

up to groups of seven (Figure 4A). This confirms the networks that underlie synchronization (Brivanlou et al.,
1998; DeVries, 1999). For these neurons, visual signalingneed for a search method that is not restricted to pairs.

The number of different groups engaged in synchro- may perhaps be understood based on single-cell re-
sponses alone.nous firing greatly exceeded the number of cells re-

corded in the population, so individual neurons clearly The randomly flickering checkerboard is a strong
stimulus for retinal ganglion cells, and one might expectparticipated in more than one firing pattern. Especially

in darkness, some cells were active in many groups, this to dramatically alter the patterns in which neurons
fire. In general, the number of significant groups de-sometimes over 20 (Figure 4B). Other neurons partici-

pated in zero or only a few groups. The median number creased under visual stimulation (Figure 4A), but the
remaining ones were similar to those in darkness. In theof groups per cell was 5.5. This raises the possibility that

an individual ganglion cell may help transmit a variety of above sample population, 37% of the groups encoun-
tered under flicker stimulation also fired together in dark-distinct visual messages, depending on which other

cells spike simultaneously. In principle, a small number ness. For individual neurons, the fraction of spikes in
groups was highly correlated in darkness and flicker,of neurons would be sufficient to construct many differ-

ent groups: for example, four neurons could form nine although a few cells participated in no groups under
one condition or the other (Figure 4D). One concludesdifferent synchronous groups. Thus, it is interesting to

examine the actual number of distinct partner cells that that synchronous firing in groups is prominent with and
without visual input, and that some of the networks thata neuron engages within all its groups. This was found

to vary over a broad range, up to �10 partners (Figure synchronize neurons in darkness are also active under
visual stimulation.4C). Still, a distinct subset of cells (�20%) did not fire

in groups at all. What is the spatial arrangement of retinal ganglion
cells engaged in synchronous firing? Prior analysis ofSalamander ganglion cells can be classified into four

major types based on their visual response properties pairwise correlations has shown that the correlation in-
dex decreases with distance between two cells, by a(Warland et al., 1997), and these types contributed very

differently to synchronous firing: within the “fast OFF” factor of 1/e in �200 �m (Meister et al., 1995). Accord-
ingly, we found that cells participating in a group tendand “slow OFF” types, the proportion of neurons firing

in groups was 80%, among “weak OFF” cells 30%, and to be close to each other, though not necessarily nearest
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In this “white noise” display, the light intensity is modu-
lated randomly and independently in time, space, and
the color dimension. From a ganglion cell’s spike train
during a long stretch of such flicker stimulation, one can
compute the spike-triggered average stimulus (STA).
This corresponds to the average visual sequence—
equivalent to a short movie clip—that precedes a spike
from the neuron (Experimental Procedures; Meister et
al., 1994). To first order, this is the visual message that
the neuron conveys to the brain: if an observer at the
other end of the optic nerve records a spike from this
cell, in the absence of additional information, the best
estimate of the preceding visual stimulus is equal to the
neuron’s STA. This analysis easily extends to groups of
synchronized neurons: to find the message conveyed
by a firing pattern, one calculates the average stimulus
triggered on the occurrence of synchronous spikes from
all cells in the group (Ghose et al., 1994; Meister et al.,
1995; Dan et al., 1998).

Figure 6 illustrates the STA for three retinal ganglion
cells, and also for their synchronous firing pattern. Note
that the STA is a function of space, time, and color
(Equation 16), which can be approximated usefully as a
product of a spatial profile, a time course, and a color
spectrum (Equation 17). The three ganglion cells in Fig-
ure 6A are very similar in the time course and in the
spectral sensitivity of their STA, reflecting common char-
acteristics of the “strong OFF” functional type of gan-
glion cells (Meister et al., 1995). Specifically, the time
course shows a characteristic dip in the intensity at

Figure 5. The Spatial Relationships of Synchronized Groups of negative times, so a spike from such a neuron reports
Neurons that a dimming occurred �100 ms earlier. The spectral
(A) The locations on the retina of 44 ganglion cells recorded simulta- sensitivity is largest for the red channel of the monitor,
neously, with an outline of the hexagonal multielectrode array. Four because the salamander retina is dominated by a red-
of the ganglion cell groups found in darkness are identified by a sensitive cone. The three cells differ in the spatial profile
common color. Cells filled with two different colors participated in

of their receptive field, which indicates that their den-both groups.
drites cover different but overlapping regions of the ret-(B) The separation of cells in a group was measured as their root
ina. The STA for the synchronous firing events involvingmean square distance and histogrammed over all groups recorded

in darkness or under flicker stimulation. all cells resembles the individual STAs in the temporal
and spectral dimensions. However, the receptive field
profile of this firing pattern differs from that of the individ-

neighbors (Figure 5A). Often, a group of cells was inter- ual cells: it occupies a small region approximately at the
spersed with other neurons that did not participate in intersection of their individual receptive fields.
the same pattern of firing. We quantified the spatial The neurons participating in a synchronous group
extent of a group by the root mean square distance tended to be very similar in their temporal integration
between its component cells. This ranged from �50 �m and spectral sensitivity, but differed in their spatial re-
to �350 �m for different groups (Figure 5B). The spatial ceptive fields (e.g., Figure 6A). Among cells in a group,
extent was similar for groups found in darkness (174 � the relative variation (Equation 21) was 19% � 12%
75 �m, mean � SD) and under visual stimulation (150 � (mean � SD over groups) for the time course of the STA
65 �m). The lateral networks underlying these correla- (a(t) in Equation 17), only 6% � 7% for the spectral
tions apparently extend for a few hundred micrometers, sensitivity (ck), but 73% � 27% for the receptive field
but connect to ganglion cells within that range selec- (bx). This is consistent with the observation that syn-
tively rather than indiscriminately. chronized firing occurs primarily among ganglion cells

of similar functional types, rather than across a mixture
Visual Messages Transmitted by Synchronous of types (Meister et al., 1995; DeVries, 1999). Thus, if
Spiking Groups synchronous spikes play any special role in communi-
We now consider what information a synchronous firing cating the visual stimulus, it is likely in the spatial do-
pattern conveys to the brain about the visual stimulus, main, by specifying where a stimulus occurred, not when
and compare this to the visual meaning of such a firing it occurred or what color it had. Accordingly, we focused
pattern if it arose by chance among ganglion cells re- further analysis on the spatial receptive fields of firing
sponding to the stimulus independently. patterns.

To provide the retina with a rich visual ensemble, we In this context, it is useful to have a benchmark expec-
stimulated it with a randomly flickering checkerboard tation for the receptive field of a firing pattern, as mea-

sured by the spatial profile of its STA. What should onepattern (Experimental Procedures; Meister et al., 1994).
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Figure 6. The Spike-Triggered Average Stimulus of Cells and Synchronous Groups

(A) The STA for three ganglion cells (top three panels) and for the synchronous spike triplet among those three cells (bottom panel). Each
panel illustrates the time course of the STA (left, a(t) in Equation 17), the spatial profile (middle, b(x)), and the relative sensitivity to the three
color channels (right, ck).
(B) The receptive field profiles, b(x), of three individual cells and of their synchronous spike pattern (bottom), displayed as in the middle column
of (A). The ellipse is the contour of the Gaussian shape used to fit the receptive field profile, at 1 standard deviation from the center.
(C and D) Receptive fields for two more triplets of cells and their synchronous spikes, displayed as in (B). Note that some cells participate in
several triplets.

expect for this receptive field if the individual ganglion examples of spike triplets. To analyze this further, each
STA profile was fitted with a two-dimensional Gaussiancells are not engaged in any concerted function, but

simply modulate their firing rate independently of each (Figures 6B–6D), and we measured the receptive field
radius by the standard deviation of that Gaussian (Equa-other in response to the stimulus? Under this null hy-

pothesis, synchronous spikes occur only because the tion 20). Figure 7A compares the receptive field radius
of each firing pattern to that of the average participatingneurons are individually modulated to fire faster at

around the same time. One can make a simple prediction neuron. We found that the pattern’s receptive field was
nearly always smaller than that of the average compo-for the STA of synchronous spikes in the special case

where the neurons have nonoverlapping receptive nent cell, and certainly smaller than the union of their
receptive fields. This was true irrespective of the sizefields. For example, two otherwise identical OFF cells

with disjoint receptive fields will fire synchronously if the of the group. For �60% of the groups inspected, the
receptive field radius was even smaller than that of therandom checkerboard has dark values simultaneously in

those two distinct regions. After averaging the stimulus smallest receptive field among the component cells.
We inspected receptive field sizes by a secondover many such events, one will obtain a receptive field

profile with two lobes that looks like the sum of the method that does not rely on Gaussian fitting. In this
approach, we measured the area of a receptive fieldtwo individual receptive fields. This relationship can be

generalized to cells with overlapping receptive fields in which the magnitude of the STA exceeded a given
threshold. This was done for the synchronous firing pat-(Equation 32), showing that, under a broad range of

conditions, the STA for synchronous spikes among inde- tern and for the individual participating cells. We com-
pared the spatial union of the regions above thresholdpendent neurons is proportional to the sum of their indi-

vidual STAs. for the individual cells with the area above threshold for
the firing pattern; this was repeated for several differentUnder the null hypothesis of independent visual sig-

naling, one would therefore expect the receptive field of threshold values. The method confirmed that the re-
ceptive field of a synchronous group was considerablya firing pattern to approximate the union of the individual

cells’ receptive fields, which is of course always larger smaller in area than the sum of the receptive fields of
its component cells (Figure 7B). We conclude that thethan the individual receptive fields. Counter to this pre-

diction, we found that the receptive field of a firing pat- visual message conveyed by a synchronous spiking
group is different from what one would expect given thetern was generally smaller than that of the individual

participating neurons, illustrated in Figures 6B–6D with visual responses of the component cells taken individu-
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places the shared presynaptic neuron in the inner retina:
an amacrine cell or possibly another ganglion cell (Figure
8A). Because those correlations are so short-lived, this
cell likely produces action potentials, or at least fast
transients, even during spontaneous activity. If this
interneuron branches out to several ganglion cells, then
those will all be excited together and become recog-
nized as a synchronously firing group in our analysis.

Under visual stimulation, we found many of the same
ganglion cell groups as in darkness, suggesting that the
interneurons that synchronize ganglion cells in darkness
also do so under visual stimulation (Figure 8B). In this
view, the receptive field of a synchronized spike pattern
among ganglion cells is simply the receptive field of the
underlying interneuron. An individual ganglion cell often
participates in more than one pattern of firing (Figure
4B), suggesting that it is driven by several such interneu-
rons. Then the ganglion cell’s receptive field profile, as
measured by the STA, is the average of the receptive
fields of its presynaptic interneurons (Figure 8B and
Experimental Procedures). This can explain why the re-
ceptive fields of firing patterns generally had a smaller
extent than those of individual ganglion cells (Figures 6
and 7). Note also that the receptive field size of a firing
pattern does not depend on the number of ganglion
cells in the group (Figures 7A and 7B). For example, in
the thresholding analysis of Figure 7B, the receptive
field area for triplets was 95% � 20% (mean � SD) that
of the underlying pairs. Pairs, triplets, quadruplets, and
higher-order patterns all have a similar receptive field
size, which is considerably smaller than that of a single
cell. This is consistent with the notion that any firing

Figure 7. The Receptive Field Sizes of Synchronous Groups pattern among ganglion cells reflects the firing of a pre-
(A) The radius of the visual receptive field of a synchronous group synaptic interneuron, and those neurons all have similar
of ganglion cells is compared to the average radius of the individual

receptive fields.receptive fields of the members of the group. Results are shown
If one were to analyze the ganglion cell responsesseparately for ganglion cell pairs, triplets, and quadruplets. The line

one neuron at a time, one could certainly derive an un-represents equality. Radii are determined from the Gaussian fits
(Figures 6B–6D and Equation 20). derstanding of how each neuron responds individually
(B) The area covered by the receptive field of a synchronous group of to the visual stimulus. One even expects that nearby
ganglion cells is compared to the area of the union of their individual neurons should occasionally fire together because of
receptive fields. In each case, the area is that enclosed by a contour overlap in their spatial receptive fields. However, the
line of the receptive field profile, b(x). To test the generality of the

prediction of these synchronized firings would berelationship, the contours were measured at a series of different
grossly flawed. For example, a popular framework forelevations of the receptive field profile, indicated by different
visual responses from individual ganglion cells is thesymbols.
“linear-nonlinear” (LN) model (Hunter and Korenberg,
1986; Meister and Berry, 1999; Chichilnisky, 2001): it
assumes that the light intensity gets pooled over spaceally. Specifically, the receptive fields of firing patterns
and integrated over time with a linear weighting functionare more localized in space and can convey spatial detail
(L), and the result gets converted to the neuron’s firingat a resolution finer than expected from receptive fields
rate by a generally nonlinear function (N). Such a modelof single ganglion cells.
can accommodate many key features of visual neurons:
an arbitrary receptive field profile; an arbitrary temporal

Discussion integration function and spectral sensitivity at each point
in the receptive field; and nonlinearities such as rectifica-

The Origin of Synchronous Firing Patterns tion and saturation in the firing response. Using any
The observation of synchronous firing among retinal model in this class for the single-cell responses, one
ganglion cells in the absence of visual stimulation (Fig- can show that the receptive field profile of a joint firing
ure 1) suggests that they share a source of presynaptic pattern is the average of the component ganglion cell
input which is spontaneously active even in darkness receptive fields, and thus should be larger in extent than
(Mastronarde, 1983; Meister et al., 1995). The present that of the individual neurons (Figure 8C and Equation
study focused on synchrony on the short and intermedi- 33). This is very different from what we observed (Figures
ate time scales (defined here by �25 ms spike interval), 6 and 7).
thought to be caused by shared input to ganglion cells Synchronous firing patterns account for up to 60% of

all the spikes recorded by the electrode array and upvia electrical synapses (Brivanlou et al., 1998). This
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Figure 8. Circuitry Contributing to Synchro-
nous Firing among Ganglion Cells

(A) Synchronous firing of two ganglion cells
(A and B) in darkness may be caused by cou-
pling to a spontaneously active amacrine cell
or other interneuron (C).
(B) Under visual stimulation, the interneurons
(C, D, and E) respond to the stimulus, here
via an LN mechanism (Equation 22). Each
interneuron is taken to have a Gaussian re-
ceptive field profile. For each of the ganglion
cells (A and B), the receptive field profile (thin
bottom curves) is the average of that of its
input neurons (Equation 36). The joint spikes

between two ganglion cells have the narrow receptive field (bold bottom curve) of their shared interneuron.
(C) Here the ganglion cells (A and B) respond to the stimulus independently, each by an LN mechanism (Equation 29) with a Gaussian receptive
field (thin bottom curves). Coincidences between the ganglion cells occur when the stimulus excites each one. These events have a broad
receptive field (bold bottom curve) corresponding to the average of the individual ganglion cell receptive fields (Equation 33).

to 90% for certain individual cells. Moreover, their re- after filtering through the outer retina, is rather slow, on
the time scale of �100 ms (Warland et al., 1997). Insponse properties are not what one might predict based
effect, the excess temporal bandwidth that fast-spikingon single-unit analysis, so it is important to recognize
ganglion cells offer over slow photoreceptors can bethe firing patterns when interpreting the activity of this
converted to additional spatial bandwidth by the use ofneural population.
a synchrony code.

Is such a concerted coding scheme actually used to
The Interpretation of Synchronous Firing Patterns productive ends by the visual system? Studies of retinal
To extract visual information from these responses opti- responses alone cannot provide the answer, but there
mally, one should assign a separate message to each are additional pieces of suggestive evidence (Meister
firing pattern, rather than to each individual neuron. For and Berry, 1999). For one, virtually all vertebrate eyes
example, in Figures 6B–6D the same cell participates in have considerably more photoreceptors than optic
all three spike triplets, but its spikes have a different nerve fibers, and thus could support a finer spatial reso-
receptive field in each of those combinations and thus lution than one would estimate from the array of ganglion
convey a different message about the location of the cells. Second, the optic nerve is the narrowest part of
stimulus. Because the receptive fields of firing patterns the visual system; nowhere else in the brain is the visual
are small and there are many more such patterns than scene represented by as small a population of neurons.
there are individual cells, this way of decoding the optic Constraints on the thickness of this cable arise in part
nerve signals could reveal greater spatial detail than one from the need for eye movement, which pulls and bends
treating individual neurons as the fundamental ele- the nerve. Under these conditions, a coding scheme
ments. Such an enhancement of spatial information has that conveys more distinct messages than there are
indeed been achieved in decoding the synchronous fir- fibers would indeed be very attractive.
ing of LGN neurons in the cat (Dan et al., 1998). The neural hardware in the early visual system seems

In the wiring diagram of Figure 8B, the visual scene well suited to supporting a synchrony code (Usrey and
is encoded at the spatial resolution of the presynaptic Reid, 1999). Synapses in the mammalian retino-genicu-
interneurons, without requiring a dedicated “labeled late pathway are exceptionally strong, unlike intracorti-
line” for each of these neurons in the optic nerve. The cal synapses. In fact, a single retinal ganglion cell can
signal of each interneuron is instead “labeled” by a syn- trigger an LGN relay neuron in almost 1:1 fashion (Cle-
chrony tag between several optic nerve fibers. The pre- land et al., 1971), and thus conveys its spike train reliably
cise relative timing of spikes from different ganglion cells to the visual cortex. Groups of synchronous spikes will
identifies them as a group carrying its own message be preserved in this process, because there is little tem-
about a distinct visual feature. The absolute timing or poral dispersion. Neurons participating in a synchro-
frequency of that spike pattern encodes when or how nous group tend to be of the same cell type and located
much of that feature occurred in the visual stimulus. The near each other on the retina; thus, they will have axons
exact nature of that relationship between stimuli and of similar length and diameter, and therefore similar con-
spike groups remains to be spelled out, but one can duction times to the target. In fact, direct measurements
think about neural coding by spike groups using the of conduction times in the cat suggest that the total
same kinds of models previously applied to single spike latency from a retinal ganglion cell through the LGN to
trains (Meister and Berry, 1999). the cortex varies by �3 ms among cells of the same

An important condition for such concerted coding is functional class (Cleland et al., 1976). Once the signals
that the average firing rate of ganglion cells must be reach the visual cortex, the neural bottleneck is passed,
low enough to avoid spurious coincidences that could and a much larger neuronal population is available to
be interpreted as synchrony tags. This is indeed the encode the scene. These recipient neurons can act as
case, in both amphibian and mammalian retina (Meister, coincidence detectors for spikes impinging from differ-
1996). The retina can afford these low average firing ent afferent fibers (Alonso et al., 1996; Usrey et al., 2000).

Thus, the early visual cortex may well decode the distrib-rates because the temporal variation in the stimulus,
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r (AB)
j � r (A)

j r (B)
juted firing patterns among optic nerve fibers and repre-

sent them explicitly again in a single-neuron code.
��1, if cells A and B fired in time bin j

0, otherwise (2)One cost associated with this coding scheme are the
additional action potentials needed to transmit the syn-

The events where either A or B fires alone are retained in the symbolschronous firing patterns. For example, an interneuron
A�B and AB�.

connected to three ganglion cells produces three This new representation uses fewer 1’s to specify the same data,
spikes, whereas only one would be needed if the but also requires an additional spike train. To see whether this

recoding really enables a compression, we compute the bit entropyinterneuron had its own optic nerve fiber. The redun-
of the data set before and after the symbol change. This correspondsdancy introduced by the extra spikes is precisely what
to the minimal number of bits per time bin required to store all theallowed our algorithm to find them in the first place. It
individual spike trains (Shannon and Weaver, 1963):

has been argued that the metabolic energy required to
maintain spiking is a serious constraint on retinal func- H � ��

M

i�1

Pi logPi � (1 � Pi)log(1 � Pi), (3)
tion (Balasubramanian et al., 2001; Laughlin, 2001). The

where M is the number of spike trains, Pi is the probability thatpredominance of synchronous firing suggests that this is
symbol i has a spike in an arbitrary time bin,not the only constraint, because many action potentials

could be saved with a “labeled line” coding scheme.
Pi �

1
N �

N

j�1

rj
(i), (4)Instead, the system finds itself under competing pres-

sures, among them the need for acute vision, the need
N is the number of time bins in the data set, and log denotes the

for eye movements to stabilize gaze or to scan the logarithm to base 2.
scene, the consequent mechanical constraints on the Introducing a new symbol AB adds a term to the sum of Equation

3, but removing the synchronous spikes from the remaining spikethickness of the optic nerve, and the cost of metabolic
trains A�B and AB� decreases their contributions to the sum. Denot-energy to sustain retinal function.
ing the probability that A and B fire together by

PAB �
1
N �

N

j�1

rj
(AB) , (5)Experimental Procedures

Multielectrode Recording and Visual Stimulation one finds that the net reduction in entropy from the recoding is
The preparation of the retina, visual stimulation, and recording of
ganglion cell spike trains were conducted as described (Meister et 	HAB � log�(1 � PAB)(1 � PA � PAB)(1 � PB � PAB)

(1 � PA)(1 � PB) �
al., 1994; Smirnakis et al., 1997). In brief, a piece of isolated retina
was placed ganglion cell side down onto a flat array of 61 extracellu-

� PA log �(PA � PAB)(1 � PA)

(1 � PA � PAB)PA
�lar electrodes spaced at 60 �m distances. Spikes from the ganglion

cell layer were recorded on all channels in parallel and sorted into
single-unit spike trains. The spatial location of a ganglion cell body

� PB log �(PB � PAB)(1 � PB)

(1 � PB � PAB)PB
�was triangulated from the electrodes that recorded its spikes, with

each electrode location weighted by the corresponding spike am-
plitude. � PAB log �PAB(1 � PB � PAB)(1 � PA � PAB)

(1 � PAB)(PA � PAB)(PB � PAB) � (6)
Visual stimuli were generated on a computer monitor and pro-

jected demagnified onto the retina. For random checkerboard stimu- If 	HAB is positive, one can compress the data set by representing
lation, the field was divided into a grid of 70 �m squares. Within the joint firing of A and B explicitly in AB, and the value of 	HAB
each square, the red, green, and blue guns of the monitor were is the number of data storage bits per time bin one saves by making
turned on or off by a random choice. New random values were the replacement.
chosen periodically at time intervals of 15–120 ms. The mean light To gain some intuition for this criterion, consider the case of
intensity of the stimulus ranged from high scotopic to low photopic. PAB �� PA, PB, where only a small fraction of each cell’s spikes

are joint firings (Redlich, 1993). Under those conditions, Equation 6
simplifies to

Identification of Synchronous Spiking Groups
	HAB � PABlog(PAB/PAPB). (7)We identified groups of synchronized cells in the recorded spike

trains by seeking a so-called factorial recoding of the data that In this limit, one sees that the benefits of defining the new symbol
would compress the spike trains. This is a common approach for AB are greater the more often the joint firing event occurs, due to
finding and removing patterns in a data set for the purpose of com- the factor PAB. Additionally, the factor log(PAB/PAPB) is large when
pression (Storer, 1988). Specifically, we adapted a method due to joint firing occurs much more often than predicted from the product
Redlich (1993) that is suited for data containing strong correlations of the individual firing rates. Thus, our measure of a firing pattern’s
within certain subsets of the symbol set but few correlations be- importance is a combination of its absolute frequency and its relative
tween these subsets. In multineuron spike trains, such strongly cor- unexpectedness given the firing rates of the constituent neurons.
related subsets correspond to cells that fire together as a group. The identification of groups begins by computing 	HAB for all cell

The ganglion cell spike trains were binned into time intervals of pairs. The pair yielding the largest value is chosen and its synchro-
width 50 ms, and represented in a binary fashion: nous spikes are given a new symbol AB, as described above. Then

this process is repeated. In each round, the symbolic cells of previ-
ous iterations are treated on an equal footing with the real cells.

r (A)
j � �1, if cell A fired 
 1 spikes in time bin j

0, otherwise
(1) After just two iterations, it is possible to combine two symbolic cells

into a new one and thus identify synchronized groups of three or
more real cells. The iterations stop when the largest available 	HAB

If two cells A and B fire together frequently, they will tend to each falls below a predetermined threshold of significance.
exhibit 1 within the same time bin. This representation is inefficient in We set this threshold high enough so the algorithm would not
that two 1’s are used to indicate the occurrence of a single event. One identify groups based on chance coincidences. To find this thresh-
can recode the data by defining a new symbolic cell, AB, whose spikes old, each ganglion cell’s spike train was shifted by a different random

number of time bins. This shuffling procedure maintains the actualrepresent synchronous firing of the real cells A and B (Figure 2B).
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interspike interval distribution and all other single-cell statistics of With this, the true distribution of group size p(L) can be found from
the spike trains (Oram et al., 1999), but reduces the synchronous the observed distribution p(M) recursively, starting with the groups
spiking events between different neurons to the spurious level ex- of the largest observed size. For our observed distribution (Figure
pected by chance. We computed the largest 	HAB in this shuffled 4A), one obtains reasonable actual distributions, with positive num-
data set and chose a threshold just above this critical value. This bers for p(L), only for large values of the recording probability (f 

ensured that no artifactual groups appeared when the algorithm 0.75 in darkness or f 
 0.5 under visual stimulation). Because the
processed the original set of spike trains. overall recording yield is likely much smaller (f � 0.2) (Meister et al.,

To assess the reliability of the group identification further, we 1994), this calculation suggests that the assumption of unbiased
occasionally repeated the analysis using only half of the data set. cell sampling is incorrect. Synchronized firing tends to involve gan-
About 80% of the patterns identified were identical between the glion cells of the same functional type (Mastronarde, 1989; Meister
two analyses; small discrepancies arose because the accretion of et al., 1995; DeVries, 1999), and the electrode array may record
cells into groups (Figure 2B) proceeded in a slightly different order some of these types with a high efficiency of f 
 0.5. Other cell
depending on the joint frequencies in the two data sets. The overall types must be recorded with lower efficiency, and correspondingly
set of patterns emerging from the two analyses had very similar one learns less about their synchronous firing patterns.
statistics. For example, the number of partners engaged by a gan-
glion cell (Figure 4C) differed by 1 or less for 90% of the neurons.

Computing the STA and Receptive Field ParametersWe also tested the dependence on the width of the coincidence
For analyzing the flickering checkerboard experiments, it is usefultime bin, with values down to 20 ms. This again yielded very similar
to normalize the light stimulus by subtracting the mean and dividingresults, verifying once more that the identified patterns are not spu-
by the standard deviation,rious.

Strength of the Correlation in Groups
To compute the correlation index (Figure 3) among M cells labeled

s � normalized light intensity �
I � �I�

(�I2� � �I�2)1/2
. (13)

1…M, note that their frequency of synchronous firing is (Equation 1)

P1…M �
1
N �

N

j�1
�
M

i�1

rj
(i), (8) If the values of the random checkerboard stimulus are

sijk � stimulus value for time bin i,whereas the frequency expected if they were firing independently is
region j, and monitor gun k, (14)

P1…PM � �
M

i�1

1
N �

N

j�1

rj
(i). (9)

and the resulting response of a retinal ganglion cell is

For each group we computed the ratio of these two terms, the
ri � number of spikes fired in time bin i, (15)correlation index

then the spike-triggered average stimulus is computed as
C1…M � P1…M/�

M

i�1

Pi . (10)

hijk � spike-triggered average stimulus in time bin i
For Figure 3, inset, we computed PABC/(PABPC), the frequency of a
triplet ABC compared to that of the single cell C and the pair AB

relative to the spike, region j, and monitor gun k.

from which the triplet was identified by the search algorithm.
Time Binning � �

N

l�1

rl s(l�i)jk	�
N

l�1

rl (16)

The 50 ms time bin used in our pattern search captures the narrow
and intermediate correlations found in the salamander retina (Figure
1B; Brivanlou et al., 1998) and is less sensitive to the broad correla- This STA is a function of time before the spike, spatial location, and
tions. Note that if two cells fire 25 ms apart, they will be detected color channel. To obtain an estimate of the spatial receptive field,
in the same bin half the time. we approximated the STA by a product of three functions that indi-

Once the identity of the various cell groups was known, we re- vidually depend only on time, space, and the color channel:
turned to the original spike trains to parse them into events corre-
sponding to the firing of these groups. The purpose was to remove

hijk � ai bj ckthe time bin boundaries introduced in Equation 1 by sliding a time
window continuously over the spike trains and testing for occur- ai � a(ti) � time course of the STA in time bin i
rence of group firing within the window. One cell in each group was

bj � b(xj) � profile of the STA in region jdenoted the reference cell. If spikes from all other cells in the group
fell within �25 ms of a spike from the reference cell, that set of

ck � sensitivity of the STA to color channel k. (17)spikes was denoted as a firing of the group. After scanning the
spike trains this way for each group, some spikes remained unas-

This was done by finding the three functions ai, bj, and ck thatsigned. This procedure led to the fraction of spikes in groups re-
minimize the squared errorported in Figure 4.

Estimating the Effects of Undersampling
�
i,j,k

(hijk � aibjck)2.Because the electrode array does not record from all the overlying
cells, the observed groups of synchronized cells will tend to be
smaller than the actual groups. Suppose the recording method is Although the responses of retinal ganglion cells do not exactly sepa-
unbiased, such that each ganglion cell has a probability f of being rate in space, time, and color (Wandell, 1995; Meister and Berry,
recorded. For a cell group of actual size L, the probability that it 1999), this approximation provided a good estimate of the spatial
appears in the recording with size M is specified by the binomial receptive field. The shape of this profile b(xj) was then fit with a two-
distribution: dimensional Gaussian bell shape,

p(M|L) �
L!

(L � M)!M!
f M(1 � f)L�M . (11) b(x) � Bexp(� 1

2
(x � u)TC�1(x � u)), (18)

Denoting the fraction of groups with actual size L by p(L), the fraction
where

of groups with observed size M is

u � center of the Gaussianp(M) � �
∞

L�M

p(L)p(M|L)

C � covariance matrix for the shape of the Gaussian. (19)

� �
∞

L�M

p(L)
L!

(L � M)!M!
f M (1 � f )L�M . (12)

From this, we defined the radius of the receptive field as the mean
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radius of the Gaussian at 1 standard deviation from the center On the left-hand side, h is a vector. On the right-hand side, the
distribution p(s) is spherically symmetric, but f is a vector. From

R � mean radius of the Gaussian � (detC)1/4. (20) symmetry arguments one concludes immediately that h points in
the direction of f, so the neuron’s spike-triggered average is propor-Variation of the STA in a Group of Cells
tional to its filter function,The variation among the STAs in a given group of cells was com-

puted separately for the time course ai, the spatial profile bj, and hijk � �fijk . (28)
the spectral sensitivity ck. For example, let

The specific value of � depends on the function N( ).
a � 
ai�/ √�

i
ai

2

The STA for a Synchronous Firing Pattern among
be the normalized vector specifying the shape of a given cell’s time Independent LN Neurons
course. For any group of M cells, we measured the scatter of their Suppose two retinal ganglion cells A and B each respond to the
sensitivity vectors about the mean and divided by the length of the stimulus according to an LN model (Figure 8C). Their instantaneous
mean to obtain the variation V: firing rates are

r (A)(s) � N(A)(s · f (A)) and r (B)(s) � N (B)(s · f (B)), (29)V � � 1
M � 1 �

M

i�1

(a(i) � m)2/m2, where m � 1
M �

M

i�1

a(i) . (21)

where f(A) and f(B) are the respective linear filters, and N(A)( ) and N(B)( )
For the spatial profile and the spectral sensitivity, the same analysis are the nonlinearities. If the two cells operate independently, then
was performed on the vectors bj and ck, respectively. the probability that they fire synchronously is simply proportional

to the product of their individual firing rates. Specifically, if spikes
are considered synchronous within a short time interval 	t, then theThe STA for an LN Neuron
rate of occurrence of synchronous pairs isTo develop an expectation for the STA of a multicell spike pattern,

it helps to work through a specific model of the neuron’s light re-
r (AB)(s) � 	t r (A)(s)r (B)(s) � 	t N (A) (s · f (A))N (B)(s · f (B)). (30)sponse. Here we assume that the ganglion cell firing rate r (t) de-

pends on the stimulus s(t) through a so-called “linear-nonlinear” Therefore, the STA of the synchronous pair is found analogously to
(LN) relationship (Chichilnisky, 2001). Equation 27

r(t) � firing rate at time t � N�
s(t � t�,x,
)f(t�,x,
)dt��
h(AB) �


sp(s)r (AB)(s)dns


p(s)r (AB)(s)dns
where

s(t,x,
) � stimulus at time t, location x, wavelength 

�


s exp(�1
2

s2)N (A)(s · f (A))N (B)(s · f (B))dns


exp(�1
2

s2)N (A)(s · f (A))N (B)(s · f (B))dns
(31)

f(t,x,
) � spatial-temporal-spectral filter

Note that the only vector quantities on the right hand side are f(A)
N( ) � instantaneous nonlinear function (22)

and f(B), which by Equation 28 are proportional to h(A) and h(B), respec-
In the above discrete notation, tively. The vector h(AB) must be a linear combination of these two,

and therefore the STA of a synchronous spike pair is a weighted
rl � r(tl) � firing rate in time bin l � N ��

i,j,k
s(l�i)jk fijk� . (23) average of the STAs from the individual cells,

h(AB) � �h(A) � �h(B) , (32)At any instant in time, the recent stimulus values are averaged over
time, space, and color channels, with a linear weighting function where � and � specify the relative weightings. If the two retinal
given by fijk. The result is transformed by an instantaneous nonlinear ganglion cells are of the same functional type and thus use the
function N( ) to yield the firing rate. same nonlinear function N( ), then symmetry dictates that � � �,

One also needs to spell out the statistics of the stimulus: here and the STA of the pair is
we assume for simplicity that the stimulus values for the flickering
checkerboard are drawn from a normal Gaussian distribution, so h(AB) � �(h(A) � h(B) ). (33)
the probability of getting any given stimulus value is

These arguments extend immediately to groups of three and more
p(sijk) �

1

√2�
exp(�1

2
s2

ijk), (24) neurons. For neurons that respond independently according to the
LN model, the STA of a synchronous firing pattern is an average,
possibly weighted, of the STAs of the component neurons.

where the different sijk are drawn independently of each other. We comment briefly on this result, because it conflicts with a
What is the STA of a neuron that behaves according to Equation widely held expectation, “If two neurons respond independently of

23 under the stimulus ensemble of Equation 24? At any given point each other, then the only way to get responses from both is to flash
in time, say l � 0 in Equation 23, the firing rate depends on the light into both receptive fields. So shouldn’t the receptive field of
stimulus values in the preceding time interval of perhaps 1 s length. joint spikes be the overlap region of the receptive fields?” This
One can think of these stimulus values sijk as a large-dimensional natural intuition derives from the classical method of probing the
vector s � [sijk]. The probability distribution of this stimulus vector receptive fields of visual neurons, namely with a single small, flash-
is a multidimensional Gaussian, ing spot moved to different locations. Under those conditions, the

only way to get both neurons to respond is indeed to place the spotp(s) � exp(�1
2

s2), (25)
in the overlap region. When one analyzes the receptive fields of joint
spikes, one obtains by necessity the overlap region of the individualand for any given s, the instantaneous firing rate is
receptive fields (Ghose et al., 1994).

In the present work, the receptive fields were mapped with ar(s) � N(s · f), (26)
white-noise flicker stimulus, in which spots are flashing continu-

where f � [fijk] is the vector representation of the neuron’s linear ously, randomly, and independently at every location in the visual
filter. The spike-triggered average of the stimulus vector is obtained field. Two neurons can now fire synchronously either because a
by weighting its distribution with the firing rate of the neuron, spot flashed in the overlap region or because two spots flashed in

the disjoint regions. Even two neurons with no receptive field overlap
h � spike-triggered average stimulus vector will fire together when their receptive fields are stimulated at the

same time; thus, the receptive field of their joint spikes is the sum
of their individual receptive fields. The proof leading to Equation 33�


sp(s)r(s) dns


p(s)r(s) dns
�


s exp(�1
2

s2)N(s · f) dns


exp(�1
2

s2)N(s · f) dns
(27)

shows that this relationship holds even when the individual receptive
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fields overlap, assuming an LN model for the individual neurons. Received: March 12, 2002
Revised: November 21, 2002The difference from the expectation discussed above arises entirely

from the use of a different stimulus ensemble. Receptive field map-
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