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Recent advances have enabled studies of individual
biomolecules at work. One breakthrough has been the
development of optical traps, which can be used to pro-
duce motility assays in vitro that function down to the
level of single motor proteins (Block et al. 1990). When
combined with ultrasensitive position sensors, based on
either quadrant photodetectors (Finer et al. 1994; Mol-
loy et al. 1995) or interferometers (Svoboda et al.
1994), optical traps have been used to reveal the
nanometer-sized steps taken by single biological
motors, such as kinesin and myosin, as well as to
measure the piconewton-sized forces that these
mechanoenzymes generate. Another breakthrough has
been the development of low-background, total inter-
nal reflection fluorescence microscopy, which has led
to the visualization of single ATP hydrolytic cycles by
myosin (Funatsu et al. 1995). Video-enhanced, differ-
ential interference contrast microscopy has been used
to study DNA transcription by single molecules of
RNA polymerase, leading to time-resolved studies in
vitro (Schafer et al. 1991; Yin et al. 1994). Using similar
methods, the kinetics of loop formation and break-
down in individual DNA molecules have also been
studied (Finzi and Gelles 1995). The atomic force mi-
croscope, a hybrid opto-mechanical device with
nanometer spatial resolution, has led to the detection
of signals that may well reflect individual enzymatic
cycles in lysozyme (Radmacher et al. 1994), and to the
visualization of individual protein complexes, such as
RNA polymerase-DNA (Guthold et al. 1994).

Collectively, these and other experiments represent
substantial progress in the study and control of biologi-
cal processes. With the advent of single-molecule
studies comes the possibility of performing a new type
of kinetic study—one based on molecular statistics.
Traditionally, biochemists have confined their atten-
tion to the average rates at which reactions occur, rath-
er than to the fluctuations about the average. This
focus was appropriate, because in studies with bulk
quantities of reagents, variations in signals arise chiefly
from instrument or other noise. However, in single-
molecule studies, in which individual events dominate
the behavior, the measured signals often reflect the un-
derlying stochastic nature of the biochemical reaction
itself.

In fact, fluctuation analysis has a well-established
tradition in neuroscience and has long been used in
work on transmembrane channels (Colquhoun 1971;
Colquhoun and Hawkes 1977). However, analogous

studies of fluctuations during the movement of proces-
sive enzymes in vitro, such as kinesin or polymerase,
require a somewhat different analytical approach from
that developed for single-channel work, due to certain
technical differences (such as statistical non-station-
arity). In this paper, we present theoretical tools for
analyzing processive enzyme behavior and then use
our results to compute expected fluctuations in a pro-
posed reaction scheme for the microtubule-based
motor, kinesin. Experimental studies incorporating
fluctuation analysis of biological motors has only just
begun, with recent studies including measurements of
stochasticity in kinesin (Svoboda et al. 1994) and the
bacterial rotary motor (Samuel and Berg 1995). We
anticipate that the concepts developed in this paper,
which review and extend the work of Svoboda et al.
(1994), will help to form a theoretical basis for future
studies of fluctuations in processive reactions.

THEORY

A processive enzyme may be thought of as any
protein, or protein complex, that works in a cyclic fash-
ion for a significant number of iterations before com-
pletely releasing its substrate (Stryer 1995). The mean
number of such iterations, in fact, provides a quantita-
tive measure of this processivity (Kornberg and Baker
1992; Gilbert et al. 1995). In most cases, processive en-
zymes carry out some motor (or motor-like) function,
advancing relative to the substrate during each en-
zymatic cycle. Examples of processive protein com-
plexes include polymerases and ribosomes, which pro-
ceed along nucleic acids (Kornberg and Baker 1992),
as well as certain ATP-dependent mechanoenzymes,
e.g., kinesin, which moves along microtubules (Howard
et al. 1989; Block et al. 1990; Gilbert et al. 1995).

Any enzyme takes a variable time, T, to complete a
single enzymatic cycle. In this section, we address the
following question: What can one learn about the ki-
netic behavior of such an enzyme by studying the
statistical distribution of its cycle durations, P(t), or
equivalently, from the moments of this distribution?
We first address the problem in broad outline, showing
how moments can be determined, and then consider
two specific examples of cycles.

The complete distribution P(t) contains useful in-
formation about how a processive enzyme works: The
challenge is to extract this information from real exper-
imental records. At a minimum, once one determines
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the average time to complete a cycle, (t), where angie
brackets denote the expectation value, one can com-
pute the catalytic rate of the enzyme, since trivially,
km_ll(-:) But what, for example, can expressions such
as {(v?) reveal about the reaction sequence? Using
(%), we can form the dimensionless ratio

()=

(z)? M

r=

where r, the randomness parameter, is a measure of
the temporal regularity of the enzyme (Svoboda et al.
1994). If r is small, the spread in completion times is
small compared to a typical completion time itself, and
so the enzyme behaves in a highly regular, clock-like
fashion. If the value of r is near unity, the completion
cycle is highly irregular (an exponential Poisson pro-
cess achieves r = 1, see below). The value of r therefore
provides a convenient measure of the regularity of an
enzyme’s catalytic action. Typically, an enzyme un-
dergoes transitions through a series of intermediate
states during each cycle. Determination of the random-
ness parameter can shed light on the kinetics of these
transitions.

A generalized reaction sequence for the cycle of a
processive enzyme that passes through exactly M inter-
mediate states is

k k2 kp- )
1 & 2 -6 M —) 1
ky ka Y]

where the final arrow simply indicates the return of the
enzyme to its initial state, completing the cycle. For
many enzymes, some of the backward reactions in the
pathway may occur at sufficiently low rates as to be
negligible. For a given enzyme, we seek information
about the reaction pathway. How many intermediates
exist, and what are the rate-limiting transitions in the
forward and backward directions? For the trivial case
where M = 1, the enzymatic cycle reduces to a Poisson
process, for which the standard deviation equals the
mean, and so 7 is unity. For the general case, such ques-
tions are more difficult to address, requiring detailed
biochemical kinetic studies to determine each step in
the pathway. In certain single-molecule experiments,
however, it becomes possible to deduce the moments
of P(t). What can one learn about the kinetic pathway
under such single-molecule conditions?

When individual molecules have been studied, it has
been difficult, in most cases, to construct P(x) directly,
because it has not always been feasible to detect each
and every completion of the enzymatic cycle. The dif-
ficulties are technical, since many events are lost in the
noise, due to either their brevity or signal-to-noise
limitations (Svoboda et al. 1993; Finer et al. 1994; Rad-
macher et al. 1994). Fortunately, perfect detection is
not required to deduce the moments of P(x). To
determine these moments, it suffices to monitor the to-

tal number of cycles completed by a single enzyme in a
given time period, N(¢). Since this quantity is the ac-
cumulated result of multiple turnovers, it is easier to
study than the times of individual cycles, particularly
for processive enzymes, because turnovers sum to pro-
duce net displacement. As shown below, one can
derive the moments of the distribution P(t) from
measurements of N(f). In addition, the moments of
P(t), computed from N(f), constitute a statistically
robust measurement, in the sense that they are rela-
tively immune to common sources of thermal and in-
strumentation noise.

In the following discussion, we often need to consid-
er a sequence of stochastic events. The time required
to perform the entire sequence is the sum of times re-
quired to perform the individual events, and we further
assume that the individual times are governed by inde-
pendent probability distributions. For example, the
time to complete a reaction cycle is the sum of the
times required to progress from each intermediate
state to the next. In such cases, we can make use of the
well-known result that the probability distribution for
such a sum is given by the convolution of the separate
probability distributions for all the individual times
(Feller 1968, 1971). This convolution theorem is easily
demonstrated, as follows.

If one considers two sequential events, A and B,
completion of both of these events within a time ¢ re-
quires that event A be completed at a time ¢' less than
t, and that event B be completed in the remaining
interval ¢ - 1. So if P,(t), Pg(t), and P, p(¢) are the
probability densities for completion of A, B, and the
pair A + B, respectively, then P, () is given by the
joint probability that A finishes at ¢* and B finishes
t -t later, at time ¢, integrated over all possible times
<t

Paus(®)= [, Pu)Bs1~ ) ®

Equation 3 is the convolution of the two densities, P,
and Py, as asserted. Similarly, if one wants to compute
the probability that A but not B has occurred within
time ¢, then one 51mply replaces Pg(t - t') with the
probability 1 - 0 Pg(t")dt" that B does not occur
within the final t - . Multiple sequential events simply
produce multiple convolutions, as can easily be seen by
jointly considering all but the final event to be A, and
the final event to be B.

Because convolutions of probability densities
involve integration, it is generally more conven-
ient to work with their Laplace transforms, P(s) =
fw “S'P(t)dt. By so doing, convolutions become multi-
plications in the Laplace transform domain (Carrier et
al. 1983), hence P, p(s) = A(s) Pg(s). At the end of
a calculation, one takes the inverse Laplace transform
to recover the answer in terms of the original variables.
In this fashion, it is easier to compute moments of P(t)
and N(?) if we consider P(s) and N(s), their respective
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Laplace transforms. We will first find (N(s)) and
(N(s)) in terms of P(s). To do so, we require P(N, 1),
the probability that after time ¢, exactly N completions
have occurred, and P(N, s), its Laplace transform.

Completing exactly N cycles in a time interval t may
be considered to comprise N + 1 events: The enzyme
makes N completions before t, and then makes no more
completions in the remaining time. It follows from the
above discussion that

BN, 5)= ﬁ"(s)(——l =F (‘)) “

where the factor inside parentheses is the La-
place transform of 1 - f{/Py(t’)dt’. To find (N(s)) and
(N?(s)), it is useful to introduce the dummy variable, x,
and to form the probability generating function for N

Z(x,5)= iF(N, s)xV )
N=0

The generating function is reminiscent of the partition
function from statistical mechanics, because it yields
statistical averages when differentiated:

%_Z = iN P(N,s)= (ﬁ(s)) 6)
x x=1 N=0

7z < o

W x=1 - NE=0(N2 - N) PN, 5)= <N2(S)> - <N(S)> )

In our case, Z is a straightforward geometric sum

1- P
Z(x,s)= %(ﬁ) )
SO
~ 1{ B(s)
(N(s))=;(—1_j;(s)) ©
and
<ﬁ2(s)>=M (10)

s (l - 1'5(s))2

Equations 9 and 10 were derived in Svoboda et al.
(1994). Using these results, we now show that the mo-
ments of the distribution P(t) are related to those of
N(1). _

Our strategy will be to re-express P(s) in Equations
9 and 10 in terms of the moments of P(t), using the
Taylor expansion

Bs)= 2}“—{5,‘5’— an

where the moments of P(t) are

d"P(s)

<‘c"> = J:r"P(r)dr =(-1)" o

(12)

s=

This substitution yields

(N(s))= s,21> _(@%@TQ@} OW+... (13

and

(1\72(5)): 2 —{3<T>2—2<12>]+0(s")+... (14)

£@f )

where we have also carried out an expansion in small s,
which corresponds to large ¢, after taking the inverse
Laplace transform, to produce:

(N(t))=z‘i—>+%;ﬂ+0(f')+... {13)

(N(e) (NG =1 [@“}M] rom+.. 19

In Equations 15 and 16, the series have been truncated
in the lower-order powers of ¢, which do not matter in
the limit of large ¢, i.e., after multiple cycles. This limit
applies in a typical experiment, in which hundreds of
cycles might accumulate.

In the long-time limit, Equations 15 and 16 tell us
how to compute the randomness parameter, r. If we
can measure N(t), then the ratio

[{Nz(t» - (N(t))z] _ (@ - <T>2] = a7

(Ne) )| (@)

yields r. To study the moments of P(z), one need only
measure the more accessible quantity N(t), because the
terms in Equations 15 and 16 that are proportional to ¢
eventually outgrow any terms that are constant or
decay with time. This dominance of terms proportional
to ¢ constitutes the mathematical reason that experi-
mental measurements of this parameter remain com-
paratively immune to sources of noise: Eventually,
such terms outstrip any noise terms that are time-
invariant.

In the foregoing discussion, we have used the in-
teger N(f) to denote the quantity obtained during an
experiment. In practice, however, experimental
measurements will not generate integral values for
N(t), but instead a continuous version of N(f) cor-
rupted by thermal and instrumentation noise. Denot-
ing the corrupted version of N(z) as Q(f) and the com-

lim
t—>oo
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bined sources of noise as E(r), we have
Q=N+ (18)

Does this additional noise affect the measurement of r?
Assuming that the additional noise has zero mean,
(Q() = (N(1)), and is also statistically stationary, so
(8%) is constant, then the measured value of r ap-
proaches the true value during a long experiment

[(ﬂ%)) —{Qu) ] _ [(N%t)) ~(N@)Y + <§2>J

0) (N(®)

(19)
The noise E(f) simply adds a constant term to the vari-
ance in N(f); but in the limit of large ¢, this term will
again be outstripped by terms proportional to t, just as
for the other neglected terms in Equation 17. For this
reason, measurements of r need not demand a tour de
force of experimental technique, because if data can be
collected for a sufficient time (which, in turn, places
demands on the processivity of the enzyme, as defined
previously), the analysis is forgiving with respect to
thermal and instrumentation noise. In fact, the ratio in
Equation 19, which approaches r in the long-time limit,
is the definition of the randomness parameter pre-
viously adopted by Svoboda et al. (1994).

Having motivated the feasibility of measuring of r,
we proceed to examine a simple reaction pathway.
What is the value of r when the enzymatic pathway
consists of a sequence of M forward reactions only? In
this case, we have

3 k. kpg k
152 55 M 51 (20)

Again, r can always be computed by solving the system
of differential equations corresponding to the reaction
of Equation 20, but it is possible to simply write down
the answer by inspection in the Laplace transform
domain. Since the pathway involves a sequence of M
independent Poisson processes, the total cycle time is a
sum of M independent Poisson variables. P(s) is there-
fore the convolution of the M constituent Poisson dis-
tributions, which are equivalent to M multiplications in
the Laplace transform domain. The Laplace transform
of a Poisson density ke ™, is [ke™+K)tdr = ki(k+s), so

~ Mok
P(S):g(kﬁs) @)
Using equations 1, 12, and 21 yields
M
2k
p=—=_ (22)

M 2
(&)

Equation 22 can yield insights into the number of rate-

limiting steps in the pathway. If, for example, p of the
k; rates are comparable and the other M - p rates are
much smaller, then
!
P 23)
In the case of the pathway in Equation 20, measure-
ments of N(r) for a single enzyme can lead to a
determination of the number of rate-limiting steps, p,
through Equations 17 and 23. The reciprocal of r is a
lower bound to the total number of intermediate
states. In some sense 1/r can be thought of as providing
a continuous measure of the number of rate-limiting
steps, even when the rate constants are all distinct and
1/r is non-integral.

The solution-by-inspection method outlined above
becomes even handier when reversible reactions are
present, i.e., some of the k_; are non-zero. Consider the
following pathway:

k ky 3 k3 Kyt M ky 1
1 & 2 - e -
kg (24)

where a single reversible reaction takes place at the
first step. The extension to the general pathway of
Equation 2 is straightforward. The key insight is that
any particular realization of the cycle (Eq. 24) can be
viewed as a sequence of Poisson processes. In contrast
to the sequence of Equation 20, the sequence in
Equation 24 is of variable length, because the enzyme
may make any number of trips through the reverse
reaction. Each time the enzyme reaches intermediate
state 2, there are two possible routes: forward, to state
3, or backward, to state 1. The lifetime of state 2 is a
Poisson variable with distribution (k_,+k,)e~(k +4)
and the probability of leaving by the backward route is
k_j/(k_j+k,). One can characterize any arbitrary trip
through the cycle by the exact number of times, g, that
the backward route is chosen from state 2. For fixed g,
we apply Equation 21 to find the cycle duration distri-
bution

s (kY ki itk YT k,)
Pq(s)‘(k]+s) ko t+k+s Hki+s 25)

i=3

Now, g itself is a random variable with the distribution

ke Nk
P@ ‘(k.l ¥ kz) (k.l ikz) (26)

because the probability of making exactly g reversals is
the product of the probability of choosing the back-
ward route g times followed by the forward route pre-
cisely once. The total cycle time will therefore have the
distribution

B(s)= ii:,(s)P(q) (27
q=0
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because each Isq(s) is weighted by the probability of its
particular value of g. Substituting Equations 25 and 26
into Equation 27 gives

Psy= 2{(k +k2)q(k2 -Iizk_l)'
(k,]is)q (k_ i;;kis) }H(k.]iS)

The continued product in Equation 28 comes from the
factor in P(s) arising from the final M - 2 reaction
states, whereas the sum is the factor arising from the
first two states. This sum is geometric and yields

(28)

> kaoky e k;
Pls)= (s Ty stk +k2+k,)+qu,),l—!(k +s) (29)

It should be noted how much simpler it is to write
down Equation 28 than to solve the corresponding sys-
tem of differential equations. For those familiar with
probability theory, the sum in Equation 28 is basically
the composition of the generating function for g with
the Laplace transform of the probability distribution
for the time required to leave and then return to state
2. This form of composition is typical for sums of a ran-
dom number of continuous stochastic variables.

From Equations 1, 12, and 29, r for this system is

(ki +ky + k)

i 1
= g’ (kik)’

k, +k+k
kiky
As required, Equation 30 reduces to Equation 22 when

k_,—0. When all the reaction rates are comparable,

~ M5
(M +1)

—2kik,

(30)

(31

As reflected in Equation 31, adding a single reverse
process to the reaction pathway in Equation 20, to gen-
erate Equation 24, raises the value of r. Even though
the mean time, (-c), of the cycle is increased by k_y/k ks,
the variance is sufficiently increased that r is always
raised. As before, 1/r may be interpreted as a lower
bound on the total number of intermediate states in
the reaction pathway. Figure 1 shows the monotonic
rise in r as a function of k_, for M =3, 5, and 7 steps. In
the next two sections, we apply Equation 31 to the
study of specific enzyme processes.

RESULTS
Enzyme Catalysis with Reversible Substrate Binding

The pathway of Equation 24 describes the action of
any enzyme for which there exists just one non-
negligible reverse reaction rate (reversible pathways

had been independently considered by P. Mitra and K.
Svoboda [pers. comm.]). Because convolutions in time
become multiplications in the Laplace transform
domain, associativity implies that the result in
Equation 31 remains unchanged regardless of which
particular step in the pathway is reversible. A corollary
of this is that values for r do not depend on the particu-
lar sequence of the reaction steps. For many enzymes,
the primary nonnegligible reversible reaction is that of
substrate binding before catalysis. This class of en-
zymes appears to include several of the molecular
motors, among others.

We assume now that substrate binding is first order
in the substrate concentration, i.e., k; = k¢[S], and that
there are no cooperative effects. In this case, we may
censider r to be a function of substrate concentration,
[S]. Figure 2 shows how the value of r changes as a
function of k([S], for several pathways, with all other
forward kinetic rates taken to be equal. The effect of
adding reversible substrate binding is demonstrated by
the solid curves, as compared with the dashed curves
computed for an irreversible binding process. At high
substrate concentrations, the unbinding rate is negli-
gible compared to the binding rate, and the cor-
responding curves approach the same asymptote. At
low substrate concentrations, substrate binding be-
comes the sole rate-limiting step, and all curves ap-
proach r = 1. At intermediate substrate concentrations,
substrate-binding rate becomes comparable to the
other rates, hence the randomness parameter dips, but
the curves for pathways with reversible binding always
lie above those without, as expected from Figure 1. In
principle, curves such as those shown in Figure 2
should be observable experimentally, using single-
enzyme assays.

How Many ATP Molecules Are Hydrolyzed per
8-nm Kinesin Step?

Unlike myosin, which appears to release from its ac-
tin substrate during every enzymatic cycle (Spudich
1993), the kinesin motor is processive, typically un-
dergoing multiple ATP hydrolysis cycles and mechani-
cal steps subsequent to an encounter with a micro-
tubule (Howard et al. 1989; Block et al. 1990; Svoboda
et al. 1993; Gilbert et al. 1995). Single kinesin
molecules have been observed to propel microtubules
or cargo (vesicles or small microspheres) for distances
of up to micrometers in vitro (Howard et al. 1989;
Block et al. 1990), and the size of their elementary
steps has been measured at 8 nm (Svoboda et al. 1994).
The kinesin ATPase reaction pathway appears to be
distinct from that of myosin, and recent progress by
several groups has defined many of the rate constants
in the cycle (Hackney 1988; Sadhu and Taylor 1992;
Gilbert et al. 1995). Denoting kinesin by K and micro-
tubule by M, two alternative reaction schemes for
kinesin have been recently proposed (Gilbert et al.
1995; Johnson and Gilbert 1995):
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Figure 1. The randomness parameter, 7, as a function of the reverse reaction rate, k_,, in the pathway of Eq. 24, computed for dif-
ferent numbers of intermediate states, assuming that all forward rate constants have the same value. The magnitude of k_ is
normalized and displayed as a ratio to the value of the forward rate constant. Representative curves are shown for M =3, 5, and 7
states in the pathway. At k_; = 0, r equals the reciprocal of the number of states in the pathway (Eq. 23). When k_, grows large,
reversals of the first reaction dominate to such an extent that the pathway has effectively one rate-limiting step, and so r—1.

Scheme 1:

2057

2puM 100 57!
M-K+ATP & M-K-ATP = M-K-ADP-P —
20055~

g~

fast, >100s7! 20 pM7%7!
K-ADP-P — K-ADP+EF —

300
M.K-ADP — M-K+ADP (32)
Scheme 2:

2uMYs! 100 57! 205~
M-K+ ATP © M-K-ATP - M-K-ADP-P —

200 s~

. fast, >100 5™ fast, >100s~!

M-K'-ADP+P - K -ADP -

20 uM™'s™! s

300
K-ADP — M-K-ADP — M-K+ADP (33)

For simplicity, the main catalytic routes are shown (for
complete pathways, see Fig. 1 in Gilbert et al. 1995). In
both schemes, the only reversible step of any con-
sequence is ATP unbinding: Note that the kinesin
ATPase pathway does not involve a reversible
hydrolysis step, in contrast to the myosin pathway
(Hackney 1988; Gilbert et al. 1995). The large fraction

of time spent attached to the microtubule in either
scheme would account for the processivity observed in
motility assays for single kinesin molecules. An essen-
tial difference between these two schemes is that, in
Scheme 1, phosphate release occurs subsequent to
kinesin unbinding from the microtubule, whereas in
Scheme 2, the order of these events is reversed. Both
schemes appear consistent with the available data, but
Scheme 2 has the drawback of invoking an intermedi-
ate kinesin state, K*, of unproved existence (for discus-
sion, see Johnson and Gilbert 1995). Scheme 1, on the
other hand, has microtubule release associated with the
rate-limiting step, whereas the rate-limiting step has
traditionally been taken to be the point in the cycle at
which the putative power stroke occurs, and which
would therefore necessitate enzyme-substrate contact
in order to bear load. Due to experimental limitations,
the two schemes could not be distinguished, and a
lower bound of 100 s~ was placed on the indicated fast
reactions (Johnson and Gilbert 1995). Note that in
Scheme 2, both of the indicated reactions must occur at
a combined rate of over 100 s™1. In the vicinity of a mi-
crotubule, the rebinding rate K+ADP—-M-K-ADP is
probably very fast, within microseconds.

To account for processivity, several authors have
speculated about some form of cooperativity between
the two heads of the kinesin molecule, in such a way
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Figure 2. The randomness parameter, r, as a function of the substrate-dependent forward rate, k = k ([S}, in the pathway of Eq.
24, computed for various numbers of intermediate states, both with and without reversible substrate binding. It is assumed that
all other rates are constant and identical. The magnitude of the substrate-dependent forward rate is normalized and displayed as
a ratio to the value of the constant rate. Representative curves are shown for M = 2, 3, and 5 states in the pathway. The solid
curves are computed for reversible binding, and the dashed curves are computed fcr irreversible binding.

that it could move “hand-over-hand” (for discussion,
see Block 1995). In such models, the two kinesin heads
move in alternating succession (Hackney 1994a; Gil-
bert et al. 1995; Peskin and Oster 1995). However,
biochemical measurements of the overall ATPase rate
for kinesin molecules, estimated in a number of
laboratories at about 20 s !shead”!, seem hard to
reconcile with such enzymes moving in 8-nm mechani-
cal steps. Since single kinesin molecules have been ob-
served to move at speeds of 800-1000 nmes~! in vitro
(and possibly in excess of 2000 nmes~! in vivo), ATP-
ase rates closer to about 100-200 s™!+«molecule™, cor-
responding to about 50-100 s™'-head™!, are needed,
subject to the important working assumption that each
advance of 8 nm results from the hydrolysis of a single
ATP molecule. However, higher rates for truncated,
single kinesin head constructs have been measured,
and it remains possible that the kinesin ATPase is in-
hibited when it is not moving on microtubule, thereby
skewing many biochemical estimates (Hackney 1994b).
Nevertheless, the fundamental question remains as to
whether the hydrolysis of a single ATP corresponds to
an event that carries a kinesin molecule through 4 nm,
8 nm, or possibly some greater distance. Loosely
speaking, this is the mechanochemical coupling prob-
lem in a nutshell (for reviews of this issue on myosin
and kinesin, see Burton 1992; Block 1995). Since it is

not currently feasible to study ATPase rates in the
same in vitro motility assays in which stepping is
measured (but for recent progress, see Funatsu et al.
1995), we hope to take an indirect approach based on
statistics.

If enzymatic cycles and mechanical stepping are
tightly coupled, does an advance of 8 nm correspond to
ATP hydrolysis by one, or two, kinesin heads? One ap-
proach to this important question is suggested by
Equation 31. Since several possible physical schemes
for producing either 4- or 8-nm steps on a microtubule
B-type lattice are under current consideration (Block
and Svoboda 1995), statistical analysis may help to nar-
row down the current range of possibilities.

For the kinetic schemes of Equations 32 and 33, we
may compute r as a function of ATP concentration, as
shown in Figure 3. The two curves represent estimated
bounds, the upper curve being calculated under the as-
sumption that the reaction steps indicated as ““fast” are
essentially instantaneous, and the lower curve calcu-
lated under the assumption that such fast processes oc-
cur at a rate of 100 s™'. Note that under the latter as-
sumption, the predicted value for r at saturating ATP
from the Gilbert et al. (1995) data is consistent with the
earlier measurement of r = 1/2 (Svoboda et al. 1994).
The values of r in Figure 3 were computed subject to
the assumption that one 8-nm step corresponds to one
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Figure 3. The randomness parameter, r, as a function of ATP concentration, computed from Eq. 30 and plotted semi-
logarithmically, for the reaction scheme of either Egs. 32 or 33. The rate constants published by Gilbert et al. (1995) for a single
kinesin head were used. The solid curve shows the calculation subject to the assumption that reactions indicated as “‘fast”” occur
instantaneously. The dashed curve shows the same calculation, but with an assumed collective rate of 100 s~ for these reactions.

complete passage through the enzymatic pathway of ei-
ther Equations 32 or 33. From Equation 1, it is clear
that if one 8-nm cycle corresponds instead to two full
passages through the scheme (one per head), then the
value of r drops to half of that shown in Figure 3, at
each concentration of ATP. Predictions for one and
two hydrolysis events per 8-nm step are compared in
Figure 4.

We are currently in the process of determining r ex-
perimentally over a broad range of ATP concentra-
tions. It may seem that the one prior measurement of r
~ 1/2 at 2 mM ATP would already weigh in favor of a
single ATP hydrolysis per 8 nm of travel, but this find-
ing relies heavily on the particular numerical values for
the kinetic constants used. Because these values carry
uncertainties of factors of two (perhaps more), it is not
yet clear to what degree such comparisons are trust-
worthy. More reliable evidence would come from a
determination of r at rate-limiting concentrations of
ATP. In this regime, the ATP-binding step makes the
dominant contribution to Equation 19. In the event
that one step resulted from each ATP hydrolysis, r
would approach unity. If, instead, one step derived
from two such hydrolyses, r would approach one-half.
The latter analysis should prove more trustworthy, in
that it relies neither on numerical values of kinetic rate
constants measured in solution, nor on details of how
the passage of the two heads through the pathways of
Equations 32 or 33 may be coordinated. Note that

these reaction schemes refer to one head only. In the
case of cooperative heads, each intermediate in the
overall reaction pathway must specify a state for each
of the two heads simultaneously. Unless the head coor-
dination is such that one begins its trip through the
pathway as soon as the other finishes, the theoretical
predictions of Figures 3 and 4, which rely on this tacit
assumption, will partly fail. The degree of failure
depends on details of the coordination between the
heads, which must be determined experimentally. In-
deed, preliminary evidence indicates that ATP binding
to one head does appear to promote the progress of
the other head (Hackney 1994a; S.P. Gilbert, pers.
comm.). Head coordination affects the predictions for
intermediate and high ATP concentrations only, how-
ever. At low ATP levels, the predicted values of r
remain one or one-half, respectively, for one or two
ATP molecules hydrolyzed per 8-nm advance.

DISCUSSION

New experimental techniques for studying single-
enzyme molecules demand appropriate methods of ki-
netic analysis. In traditional biochemical studies with
large numbers of proteins, the customary approach has
been to measure reaction rates and, thereby, to obtain
kinetic constants. Such rates are the reciprocals of the
first moment of the probability distribution for the
lifetime of the particular intermediate state in question.
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Figure 4. The randomness parameter, r, as a function of ATP concentration, computed from Eq. 30 and plotted semi-
logarithmically, for the reaction scheme of Eqs. 32 or 33. The rate constants published by Gilbert et al. (1995) for a single kinesin
head were used. The solid curve shows the calculation subject to the assumption that a single ATP is hydrolyzed to produce an 8-
nm step. The dashed curve shows the calculation subject to the assumption that two ATPs are hydrolyzed to produce an 8-nm
step. Values of the dashed curve are precisely half those of the solid one. Both curves are computed by assuming that “fast” reac-

tions occur at a collective rate of 1005,

In the new single-molecule studies, it becomes useful
to study some of the higher moments of these probabil-
ity distributions. As we have shown here, the second
moment can carry especially useful information about
the reaction pathway.

Analysis involving the randomness parameter, r, for
single processive enzymes has the important advantage
that thermal and measurement noise can be rendered
insignificant in sufficiently long experiments. In this
sense, the statistical analysis is robust. However, a dis-
advantage to this approach is that the interpretation of
results is model-dependent and can prove difficult, es-
pecially when the number of rate-limiting steps in the
reaction pathway grows large. Furthermore, any given
value of r can be produced by a variety of reaction
schemes, although it does provide a lower bound on
the number of intermediate states. Despite these dif-
ficulties, when combined with additional kinetic in-
formation derived from biochemical or other data,
fluctuation analysis may prove helpful in untangling
difficult questions about mechanochemical coupling, as
well as providing additional corroborating evidence
about a variety of enzymatic pathways.
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