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INTRODUCTION

he.problem of migration of cell or animal populations has often been
mulated in terms of a differential equation containing terms for both
usion and drift. Controversy has arisen over the correct form of this
ation when the diffusion coefficient varies over a region of space. Here
show, from a model for a one-dimensional random waik, that different
roscopic mechanisms for variation in the diffusion coefficient require
ct differential equations. From these derivations we argue, in particu-
1at if behaviour is determined locally (i.e. does not depend on earlier
-and speed is constant, organisms cannot actively accumulate. They
so only where speeds are low. However, spatial variations in diffusion
ficent will affect the way in which cells approach equilibrium. One has
e precise about the conditions imposed by a given experimental set-up.
rlier work in which these microscopic mechanisms were not properly
uished includes that of Patlak (1953), Keller & Segel (1971}, and
lus (1980, 1981). More recent work in which these distinctions have
recognized, explicitly or implicitly, includes that of Futrelle (1982)
ivero et al. (1989).
be certain of our ground, we modelled the behaviour by Montecarlo
ion. In the interest of understanding wild-type Escherichia coli and
ants defective in adaptation (cheR cheB mutants), we included mecha-
n which turning frequency depends on a measurement of concen-
n- made over the recent past, or in a comparison of two such
asurements made sequentially. If speed is constant, we find that cells
rift up gradients of attractants only if they are able to make temporal
parisons.
dents of animal behaviour use a different terminology (cf. Diehn er
1977). A strategy in which speed is constant but turning frequency
ends on the local intensity of a stimulus is called ‘klinokinesis without
ptation’. In this case, the equilibrium distribution is uniform. A strategy
ich speed is constant but in which turning frequency depends on tem-
ccomparisons of stimulus intensity is called ‘klinokinesis with adap-
on’. In this case, if turns are suppressed when organisms move up a
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gradient, they will accumulate near the top of that gradient. A strategy
in which turning frequency is constant but in which speed depends on the
local intensity of a stimulus is called ‘orthokinesis’. Here, organisms tend
to accumulate where speeds are low.

Clearly, the term ‘bacterial chemotaxis’ is a misnomer. The phrase was
coined by Pfeffer at a time when he believed that bacteria could steer
directly toward the source of a chemical attractant (Pfeffer, 1884; reviewed
by Berg, 1975). Molecular biologists have been more interested in under-
standing the genetics and biochemistry of chemotaxis (i.e. of chemoklino-
kinesis with adaptation) than in being scrupulous about nomenclature. So
the name has stuck. It is commonly used to refer to any directed movement
of bacteria towards, or away from, chemicals, regardless of the underlying
mechanism.

ANALYTICAL TREATMENT

We were led to a protocol for deriving diffusion equations by the following
thought experiment. Fill a long, capped pipe with an ideal gas at a low
pressure, so that the mean- free path of a molecule is comparable to the
length of the pipe. Keep the pipe at constant temperature, so that the
mean speed of a molecule is everywhere constant. Now, add a number
of solid objects to the pipe, more at one end than at the other. Collisions
with these obstructions will increase the turning frequency of the gas mole-
cules. Will this lead to an increase in the mean number of molecules per
unit volume of free space at one end of the pipe as compared to the other?
Any such accumulation would increase the local pressure of the gas. If
so, we ought to be able to harness the pressure difference between the
two ends of the pipe in order to do external work and, thereby, achieve
perpetual motion. So, naively, we would not expect molecules to accumu-
late in regions of enhanced turning frequency.

Consider the following one-dimensional analogue. Let an ensemble of

non-interacting particles move parallel to the axis of a long pipe. Distribute
a series of semi-permeable barriers along that axis. Half of the surface
of each barrier is covered with openings, so that whenever a particle reaches
a barrier, it has an equal probability of bouncing back or continuing in
the original direction. In either event (by construction) it adopts the speed
characteristic of the Jocal region, as defined in Fig. 1. In addition, we assume
that the concentration of particles, C, in particles per unit volume, changes
slowly enough over space that we can take it to be constant over a region
of length 8. In other words, 8(9C/Ax)<C. We also assume that, when
6 and 7 vary over space, they do so slowly enough that we can take each
of these quantities to be constant over a region of length 8. In order words,
6(08/3x) < 8 and 8(37/9x) <. These assumptions are made so that we can
neglect higher-order terms in our derivations. ~
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1. A series of semi-permeable barriers (shown as vertical dashed lines) distributed along
-axis, dividing the space into region 1, region 2, etc. The distance between the barriers
jacent to the point x; is §; and the travel time between these barriers (in either direction)

ow, returning to Fig. 1, what is the particle flux, J, across the barrier
arating region 1 and region 2? Half of the particles in region 1 are
ving toward region 2, and half of the particles in region 2 are moving
ard region 1, at velocities of 6;/7; and 8,/m, respectively. Half of the
ticles in each group are destined to pass through the barrier and half
e reflected. Thus, the net number of particles per unit area and unit
e that cross the barrier from left to right (in the positive x-direction)

J==(UB)[C(x2)(8o/72) — Cx1)(81/m)]. (1)

he simplest case is one in which the distance between barriers, 8, and

travel time between barriers, 7, are constant. In this case, §; =8,=28,
2=, and
J=—(6/41)[C(x3) — C(x1)], 2)
chcan be written
J=—(8%47)[C(xy) — C(xy) /6. 3)

ce C changes slowly over space, [C{x,) — C(x,)}[/6=~23C/ax, and we
at Fick’s First Equation:

J=—D(3C/3x), (4)

W the diffusion coefficient D = §%47. [Note: in a derivation in which
ticles at region x, jump every 7 seconds with probability 1/2 to region
~and with probability 1/2 to region x,,.,, D= 8/2r (cf. Berg, 1983).
difference of a factor of 2 arises because in the barrier model, half
he particles in region x, are destined to remain in that region after
interval 7. But this does not change any of the basic physics.] Note
that if particles had been subjected to an external force, eqns 1-4
uld have contained an additional term of the form Cvgyg, Where vy




47 Meody S INVELL R 24 AL

is the drift velocity generated by that force. The equations, as they stand,
refer only to the flux due to random motility.

To see what happens at equilibrium, we cap the pipe with reflective
lids and wait for the particles to move around until J=0. Then by eqn
4, 9C/ox=0. This implies that at equilibrium, C is uniform. There is no
accumulation.

Let us generalize this derivation to allow for situations in which D changes
over space. We can effect this change in four ways. Case I: Vary the barrier
interval, 8, and the travel time, 7, but keep the speed, &/, constant. Case
2: Keep the barrier interval, 8, constant, but vary the travel time, 7. (The
speed is not constant.) Case 3: Vary the barrier interval, 8, but keep the
travel time, 7, constant. (The speed is not constant.) Case 4: Vary the
barrier interval, 8, the travel time, 7, and the speed, §/7.

Case I (8/7 constant)

We reach eqn 1, as before. Since the ratio &/7 is constant, eqn 1 factorises
to give eqn 2. With the assumption that & varies slowly over space, eqns
3 and 4 follow, with D= &(x)/4m(x). Note that D varies with position.
When J=0, 9C/0x=0, as before, and the equilibrium distribution is
uniform. It does not matter how we arrange the barriers: the equilibrium
distribution is uniform, provided that the speed is constant. This is the
conclusion that we reached earlier in our thought experiment. But here
we have said nothing about ideal gases: the proposition holds equally well
for self-propelled objects, such as bacteria.

Case 2 (6 constant)
Eqn 1 now factors to give
J= _(8/4)[C(X2)/TZ - C(xl)/ﬁ]. i:f:;’

To distinguish contributions to J due to spatial variations in C and 7, we
add and subtract (within the brackets) C(x,)/r, and group terms:

]: _(6/4){C(X2)[1/7'2 — 1/7'1} + [C(Xz) — C(Xl)]/’ﬁ}. (\6}
This can be written

J=—(84){Ce>)(Ums — Ur )6+ (Ur)[Cx2) — Clx1) /85 (7

By our earlier assumptions, (1/m— 1/7)/8=03(1/7)/3x, and [C(x,) — C(x,}V/

6=3(/3x. Since C and r are slowing varying:

J=—(844){C[a(1/n)/ax]) + (1/7)(aC/ax)} . (8)
But this is just

J=—-D(@C/ex) - C(aD/3x)=—3(DC)/3x, (9

with D=82/47(x). Now, when J=0, DC is constant, and C is inversely
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portional to D. The particles accumulate where the travel time is large,
where the speed, &/7, is low.

ase 3 (T constant)

qnl now factors to give

J=—(14n)[C(x2)8; — Cx1)d4]. (10)

adding and substracting (within the brackets) C(x2)6; and grouping

J=—(U4n){Clx2) (8, — 8;) + [Clx2) — C(x1)]81 ) (11)

eding as before,

e —(8/47){C(x2)(82 — )18+ 8,[C(x2) — C(x)]/5}, (12)
~ —(8/47)[C(38/3x) + 8(8C/ax)], 3

ven D = 8%(x)/4t,

J=—D(3C/3x) — C(3D/3x)12. (14)
when J=0, D'?C is constant, and C is inversely proportional to
‘ ?r,,6/7 all varying)

Vrly/ng"and subtracting terms within the brackets of eqn 1 and approxi-
erivatives, as before, we obtain,

’Jg=’_—(5/4){c5[a(1/7)/ax] +(CI7)(38/0x) + (87)(3C/3x)}.  (15)

ration cannot be formulated in terms of a diffusion coefficient,
can show that the equilibrium particle density varies inversely
speed. In fact, in all four cases, the flux equation can be rewritten

J=—(8/4)[»(3C/ax) + C(3v/ax)]. (16)

is the speed, &/7. If v is constant, the equilibrium particie density
m:. If v varies, the equilibrium particle density is inversely pro-
o-v. If, in this situation, one starts with a uniform distribution,
ticles will drift until their concentration becomes inversely pro-
tov. By eqn 16, the drift velocity is —(8/4)(3v/dx); if v increases
the ‘particles drift in the —x direction. For cases 2 or 3 (eqns 9
drift velocity is —3D/3x or —(3D/3x)/2, respectively.
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Eqn 4 has been adopted by a number of workers in the field of bacterial
chemotaxis. Lapidus (1981) derived eqn 9. Futrelle (1982) derived eqn
14 and noted the different equilibrium distributions expected from eqns
4,9, and 14.
1t is known that the way in which E. coli modulates its behaviour is
by extending runs (relatively straight segments of its track) when the direc-
tion of travel is favourable; changes in swimming speed are small (Berg
& Brown, 1972). Therefore, the present analysis implies that E. coli cannot
do chemotaxis solely on the basis of local cues: it must monitor concen-
tration over a finite interval of time. This also is required by counting
statistics: a cell cannot measure the concentration of chemicals in its
environment without taking a reasonable period of time. The standard
deviation in a count is proportional to the square-root of the count, and
the counting rate is limited by diffusion of chemicals in the vicinity of
the cell (Berg & Purcell, 1977). Onthe other hand, tumbles are not instanta-
neous, so, if a cell tumbles frequently enough, its average speed will fall.
Eqn 16 implies that, in the absence of other stimuli, such cells will tend
to accumulate where the average speed is small. For wild-type cells, this
is a minor effect. It will not be considered further here.

OTHER THEORIES

It is worth noting where we disagree with earlier work. Patlak (1953) pres-
ents a generalized formulation of the random walk. In addition to allowing
for the possibility of a preferred direction, he assumes that there are distri-
butions of possible values for 8, 7, and v, all of which depend on position
and time. This leads to an elaborate diffusion equation. In examining the
limit in which there is no preferred direction and no correlation between
runs, Patlak arrives at a simpler equation, 9C/3t = V4(DC), which is equiva-
lent to J = —V(DC), the three-dimensional analogue of our eqn 9. Unfortu-
nately, in making this simplification, he inadvertently holds the mean run
length constant (by setting the deviation from the mean run length equal
to zero, p. 329). As we have seen (Case 2) the equation J = —3(DC)/3x
is not valid in cases in which the mean run length varies while the speed
remains constant. Patlak and those who rely heavily on his work (e.g.
Okubo, 1980; Doucet & Wilschut, 1987; Turchin, 1989) believe incorrectly
that simply altering the frequency of turning as a function of position without
changing speed can result in accumulation. One encounters misleading
phrases such as ‘the well-known phenomenon of trapping . .. by enhance-
ment of the turning frequency’ (Alt, 1980) or the ‘flypaper effect’ (Stock
& Stock, 1987).

Keller & Segel (1971) derive an equation in which the flux due to random
motility is given by Fick’s Equation (with D= pu, which they call the

mobility) and the flux due to chemotaxis is given by a drift velocity times
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e concentration (with drift velocity equal to the product of a chemotaxis
efficient, x, and the slope of the gradient of the chemoattractant). In
eir derivation, the step time varies with the concentration of the attractant
it the step length is held constant, so they have, in fact, assumed that
speed changes as a function of position (Case 2). As a consequence,
e drift velocity is the gradient of the diffusion coefficient, in disguise.
ghtis lost of this in later applications, where the mobility and chemotactic
efficients are treated as phenomenological parameters (e.g. Nossal,
80).’Segel (1984) considers it a matter of taste whether or not one regards
(8D/2x) as an effective drift, ‘indeed not brought about by intrinsic direc-
preferences at point x, but rather due to spatial differences in the
of random motion’. Our point is that one must be precise in defining
t is meant by the word ‘vigor’. The consequences of varying & or ,
oth, are not the same (Cases 2-4), and if &/7 happens to be constant,
fective drift vanishes.

idus- (1981) derives a diffusion equation from a random walk with
stant step length and a stepping probability per unit time that varies
lly. Within the limit that steps in either direction are equally probable,
uation reduces to 3C/3t=03*(DC)/3x?, which is equivalent to our
~apidus concludes that ‘it is clear that cells aggregate at those places
is small’. However, if the step length is held constant while the
M’tprobability per unit time varies spatially, then the cell’s speed
o vary spatially. Lapidus’s mistake is assuming that this particular
uation is generally applicable; aggregation will not occur when the

onstant.

rlier work, Lapidus (1980) assumes that the diffusion coefficient
iction only of the local concentration of a chemical attractant and

t Fick’s Equation (eqn 4) is valid. He finds numerically that cells,

“distributed far from equilibrium, transiently shift towards regions

_the diffusion coefficient is large (i.e. move up the gradie;lt of
Ince that suppresses tumbles). However, this ‘pseudochemotaxis’,

allsiit, fades with time, and the distribution becomes uniform. This

correct. But once again, it is not generally applicable. It applies

the speed is constant.

al of all this is that different assumptions about the microscopic

'of particles or cells require distinct diffusion equations. One

lalm, for example, that J=—-3(DC)/3x and then assert that D

I space solely because of differences in turning frequency. Nor

Clalm'that J=—D(3C/3x), and then assert that D varies because

cesin speed.

t workers have been more careful. Rivero ef al. (1989) derive a

tion (their eqn 14) in which the dependence on turning frequency

d are made explicit. In the absence of chemotaxis and at constant

requation reduces to Fick’s Equation, as it should.
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COMPUTER EXPERIMENTS
Some of the assumptions on which our derivations are based, notably that
all parameters change slowly over space, might be restrictive. Are there
difficulties that arise from neglected higher-order terms? In the interest
of uncovering any such problems and extending the analysis to situations
that are difficult to solve analytically, e.g. to bacterial chemotaxis, we deve-
loped a series of Montecarlo simulations.

Equilibrium distributions

In the first simulation, a probability per step that a tumble will occur is
assigned to every point in a one-dimensional lattice, either with reflecting
or periodic boundary conditions. When the cell arrives at a lattice point,
a random number is selected, uniformly distributed between 0 and 1. If
the value is less than the tumble probability, the next step is taken in
the opposite direction; otherwise, it is taken in the same direction. (Tumbles
could just as well have been defined so that the cell sets off with equal
probability in either direction, rather than reversing, but this would merely
double the mean run length without changing any essential feature.) Before
the computer writes anything down, the cell is allowed to walk along the
lattice for a number of steps which is large compared to that required
for an ensemble of such cells to approach the equilibrium distribution.
After this initialization, the program is allowed to run for a much larger
number of steps, while the computer records the number of visits to each
lattice point. We assume that a collection of non-interacting cells will distri-
bute themselves at equilibrium with concentrations proportional to these
visitation numbers (i.e. to the fraction of time that the cell spends in a
given region of space).

Case I (speed constant)

After many trials with lattices of different sizes, with both reflecting and
periodic boundary conditions, and with different probabilities of tumbling.
we found no evidence that cells moving at constant speed accumulate in
regions of higher tumble probability. An example with reflecting boundary
conditions is shown in Fig. 2(a). In the analytical derivation for this case,
the tumble probability is 1/2. Here, it can be much smaller, so that a cell
can continue for many lattice points before being reflected. This allows
us to probe for changes in behaviour over distances which are short com-
pared to the mean run length. If the tumble probability is approximately
constant, runs are distributed exponentially, with a mean length equal to
the reciprocal of the tumble probability per unit length, as is the case for
E. coli (Berg & Brown, 1972).

Cases 2-3 (variable speed)
The essential information provided. by the computer simulations - just
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cribed is that changes in tumble probability have no effect upon the
ber of visits to each lattice point (the total amount of time per unit
gth spent in a given region of space). All that the computer does is
select a random number when the cell arrives at a given lattice point
‘to record the visit. The same process would be carried out in a simula-
“in which the lattice spacing or the step time varied. For example,
n one region the lattice spacing were doubled and the step time were
eld constant (i.e. if the speed were doubled), the number of visits to
lattice points would remain the same, but the number of visits per
tlength would halve. Thus, the equilibrium particle density would halve.
he lattice spacing were held constant and the step time were halved
ain, if the speed were doubled) the time spent in a given region would
ve. Thus, the equilibrium particle density would halve. A cell that
ges its speed as a function of position will spend a total amount of
> in a given region of space that is inversely proportional to the local
ed. Thus, we arrive at the distribution predicted by eqn 16 (and by
rence eqns 9 and 14).

asurements extending over time

ese simulations, we follow the strategy used in the first simulation
ssign the tumble probability for a given lattice point in a manner
depends upon the cell’s past history, in particular, upon the concen-
ns of an attractant that the cell has recently measured. The weightings

pproximations to those determined from measurements of responses
hered cells to impulsive stimuli (cf. Segall ef al., 1986). We use reflect-
oundary conditions. To simulate the behaviour of wild-type cells, we
a weighting factor 1/N to the concentrations sensed at the previous
tice points, and a weighting factor —1/M to the concentrations sensed
¢ M lattice points before that, and take the sum. This is equivalent
ing the difference between two sequential averages, and approximates
lerivative operator with memory. If the cell has been moving up the
nt, this sum is positive. If so, we reduce the probability of a tumble
_baseline value by an amount (gain X sum). The gain is picked
a cell moving steadily up the gradient still has a finite probability
mbling. If the cell has been moving down the gradient, the sum is
ive. In this event, the tumble probability is set to the baseline value.
uns are lengthened as a consequence of favourable measurements
ot-shortened as a consequence of unfavourable ones (cf. Brown &
974). In simulating the behaviour of cells that do not adapt (e.g.
heB mutants, cells that cannot methylate or demethylate their mem-
ransducers; cf. Segall ef al., 1986) we assign a weighting factor 1/N
concentrations sensed at the previous N lattice points and take the
As before, we reduce the probability of a tumble from the baseline
“by an amount (gain X sum), where the gain has a smaller value
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an before. Once again, the gain is chosen so that cells near the top of
e gradient have a finite probability of tumbling. Thus, tumbles are sup-
essed on the basis of measurements made over the previous N lattice
nts, but temporal comparisons are not made. The results of these simula-
s are shown in Figs. 2(b) and 2(c). Wild-type cells drift up the gradient,
g. 2(b), while cells that fail to make temporal comparisons drift down,

ig. 2(c).

Approach to equilibrium

ese simulations are done in the same way, except that we start cells
he centre of a lattice and record where they end up after a number
~steps, n. The specifications for setting the tumble probabilities are the
e as before. Fig. 3 shows a control experiment, in which the tumble
babilities are constant. Figs 4, 5, and 6 refer to the same experiments
figs 2(a), 2(b), and 2(c), respectively. In Fig. 3 the cells spread symmetri-
y (the distribution is a Gaussian). In Fig. 4 they spread more rapidly
the direction in which tumbles are suppressed (up the gradient), and
n they relax to a uniform distribution. In Fig. 5 the cells drift up the
dient, and in Fig. 6 they drift down.

OTHER COMPUTER EXPERIMENTS

ier simulations have been run in which organisms move at constant
ed and modulate their turning frequencies. Some workers reach conclu-
that appear similar to ours and others do not (Rohlf & Davenport,
9; Van Houten & Van Houten 1982; Doucet & Drost, 1985; Doucet
Wilschut, 1987; and Dusenbery, 1989). One possible source of

- Equilibrium distributions for cells moving at constant speed. (@) Tumble probabilities
ned locally (pseudochemotaxis). The tumble probability per step varied linearly from
near the left reflecting boundary (position 0) to 0.03 near the right reflecting boundary
sition 99). The tumble probabilities at the boundaries were set equal to 1. At lattice
at-50 the tumble probability was 0.135, corresponding to a mean run length of 7.4 steps.
million steps were logged. A similar distribution was obtained from a computation in
‘the tumble probability was constant (0.135 everywhere; data not shown). A portable
udorandom number generater was used that is known to be free from sampling artifacts
ess et al., 1988). A different seed was used for each figure shown in this paper. (b) Tumble
babilities defined on the basis of the difference between two sequential averages (real
motaxis). The number of lattice points used for the two averages was N=7 and M =21.

aseline probabability was 0.135. The gain was chosen so that a cell moving steadily
the gradient (toward the right) had a tumble probability 0.03. See the text. One million
s were logged. (c¢) Tumble probabilities defined on the basis of a single average (no
ation). The same gradient was sensed as in the previous computation. The number
tice points used for the average was N="7. The baseline probability was 0.135. The
as chosen so that a cell moving near the right reflecting boundary had a tumble prob-
ity-0.03. Note that the tumble probability depends on position; for a cell moving near
leftboundary, it was.0.111. See the text. Gne million steps were logged.
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Fig. 3. Approach to equilibrium at constant tumble probability (simple diffusion). Ten thou-
sand cells were released at lattice point 50 and allowed to step for # =50 times (top), 200
times (middle), or 800 times (bottom). The number of cells ending up at each lattice point
was recorded. The tumble probability was 0.135 at all points. Note the symmetrical spreading.

Approach to equilibrium with tumble probabilities defined locally (pseudochemotaxis).
computation was carried -out as in Fig. 3 with the tumble probabilities set as in Fig.
Note the feint to the right (in the direction of lower tumble probability). )
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kr',Approach to equilibrium with tumble probabilities defined on the basis of a single
ge'(no adaptation). The computation was carried out as in Fig. 3 with the tumble probabi-
t-as'in Fig. 2(c). Note the progressive shift to the left (down the gradient of an attrac-
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disagreement is made particularly clear by Figs 4 and 2(a), namely, thar,
if one foliows the displacements of cells for a limited period of time, the
conclusions reached might well be different than if one were to determine
equilibrium distributions. This is why Lapidus (1980) coined the term ‘pseu-
dochemotaxis’. Note that the transient movement in Fig. 4 is up the gradi-
ent, i.e. in the direction in which tumbles are suppressed. If one adds
sources and sinks and computes fluxes, the differences can appear even
more dramatic. For example, if, in the experiment of Fig. 4, the boundaries
at positions 0 and 99 are made absorbing, the fraction of cells arriving
at position 99 is substantially larger than that arriving at position 0 (by
a factor of 2.7). But this merely reflects the fact the the diffusion coefficient
is substantially larger over the right half of the figure than over the left.
It does not tell us what the equilibrium distribution might be.

DISCUSSION

Patterns of accumulation in bacteria resulting from changes in swimming
speed are well known. Vivid descriptions have been given by Metzner
(1920; reviewed by Berg, 1975), who watched cells of Spirillum volutans
as they responded to chemicals placed near the edge of a coverslip. In
some cases, the cells became trapped, with their flagellar bundles spinning
in a head-head or tail-tail configuration (i.e. working against one another);
in other cases the cells shuttled back and forth rhythmically a body length
or less, or stopped moving altogether. Clayton (1957) analysed such patterns
quantitatively, both in theory and experiment, using the phototactic orga-
nism Rhodospirillum rubrum. A distinction between effects arising from
modulation of turning frequency, as opposed to those arising from modula-
tion of swimming speed, was drawn by Gunn et al. (1937) and Fraenkel
- & Gunn (1940), who assigned to them the terms ‘klinokinesis’ and ‘orthoki-
nesis’, respectively. The definition of klinokinesis was based on the work
of Ullyott (1936), who studied the photoresponses of a flatworm, Dendro-
coelum lacteum; however, this work did not stand the test of time (cf.
Gunn, 1975). Fraenkel & Gunn argued (correctly) that organisms moving
at constant speed could not accumulate (alter the shape of a uniform distri-
bution) by modulating their turning frequencies, unless they could adapt
(compare the stimulus in the present with that in the past). This conviction
was undermined by the analysis of Patiak (1953), which we have found
to be in error. However, as stressed in the previous section, variations
in diffusion coefficient will affect the way in which cells approach equili-
brium. One of the best ways to determine whether cells actively accumulate
is to start with a uniform distribution and then to ask whether that distribu-
t‘iyon changes with time. This can be done experimentally with the layered-
gradient assay (Dahlquist et al., 1972; Weis & Koshland, 1988).
The results of Fig. 2 can be rationalized as follows. Imagine yourself
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t-an arbitrary lattice point watching cells arriving from the left or the
ght. In (a) the probability that a cell will tumble does not depend on
hether it has arrived from the left or the right, so the same fraction of
ells of either type will cross the boundary. At equilibrium, when the net
ux is zero, an equal number of cells must arrive from the left or the
ght. Therefore, their distribution must be uniform. In (b) the probability
a tumble is smaller when a cell arrives from the left than when it arrives
om the right, because cells have been taking derivatives with respect
-time, and some have been going up the gradient, while others have
een going down. More of the cells that arrive from the left will cross
e barrier than those that arrive from the right. Therefore, at equilibrium,
re must be fewer cells on the left than on the right. In (¢), the situation
eversed, because the probability that a cell will tumble is larger if it
arrived from the left, where the concentration of the tumble-suppressing
bstance is smaller, than if it has arrived from the right. Therefore, at
quilibrium, there must be more cells on the left than on the right.
¢ began this work with the hope of learning whether the weighting
ction used by E. coli for making temporal comparisons (called the
ulse response) reflected an optimum design (cf. Block eral., 1982; Segall
[., 1986; Berg, 1988). En route, we became aware that there was a
deal of confusion about the success of more rudimentary strategies.
se became the main subject of the present paper. In the linear, noiseless
dients of the sort considered in Figs 2(b) and 5, similar drift rates are
ained for weighting functions of the same total width, regardless of
relative size of the positive and negative lobes (assuming that the areas
he two lobes are the same, i.e. that the cells adapt). We know from
analysis of how cells count molecules that in the real world the lobes
uld have a width of the order of 1 second (Berg & Purcell, 1977).
first lobe cannot be much longer than this, because then several tumbles
ld occur before a decision were reached, and the results would not
elevant. In addition, the baseline tumble probability cannot be much
er than it is, because rotational Brownian movement carries a cell off
1se by as much as 90° within 10 seconds. In wild-type cells, the widths
he two lobes are about 1 and 3 seconds, respectively. Is the ratio of
€ values a matter of physics or biochemistry? One way to find out
ld be to extend the simulations by working in three dimensions, making
gradients lumpy rather than smooth, adding the fluctuations expected
ounting molecules, and including the meandering due to rotational
wnian movement. Drift rates computed in this manner for cells using
wild-type impulse response in a smooth, noiseless gradient agree well
) drift rates measured experimentally (Berg, 1988). A broader range
arameters remains to be explored.
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CONCLUSIONS

We re-examined the problem of migration of motile organisms in spatial
gradients of chemical attractants. We showed analytically and by Monte-
carlo simulation that organisms whose turning frequencies (tumble probabi-
lities) depend solely on the local concentration of an attractant, but whose
speeds remain constant, do not accumulate at the top of such a gradient:
once uniformly distributed, they remain uniformly distributed. On the other
hand, organisms whose swimming speeds depend on the local concentration
of an attractant do accumulate in regions where the speeds are low. This
analysis resolves a long-standing controversy in the literature that arose
because different microscopic mechanisms for generating variations in the
diffusion coefficient (a macroscopic parameter) were not properly dis-
tinguished. These mechanisms lead to distinct diffusion equations. We
extended the Montecarlo simulation to non-local strategies and found that
cells that respond (by suppressing tumbles) to concentrations of an attrac-
tant sensed over the recent past, but do not make temporal comparisons,
drift down rather than up the gradient. Cells that compare concentrations
sensed over the recent past with those sensed earlier are able to drift up
the gradient. This is the strategy used by E. coli for chemotaxis.
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