
Unified Resolution Bounds for Conventional and Stochastic Localization
Fluorescence Microscopy

Eran A. Mukamel1,3,* and Mark J. Schnitzer2,4,†

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Departments of Applied Physics and Biology, Stanford University, Stanford, California 94305, USA

3Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA;
Center for Theoretical Biological Physics, University of California, San Diego, California 92093, USA

4Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
(Received 3 September 2010; revised manuscript received 21 October 2011; published 17 October 2012)

Superresolution microscopy enables imaging in the optical far field with �20 nm-scale resolution.

However, classical concepts of resolution using point-spread and modulation-transfer functions fail to

describe the physical limits of superresolution techniques based on stochastic localization of single

emitters. Prior treatments of stochastic localization microscopy have defined how accurately a single

emitter’s position can be determined, but these bounds are restricted to sparse emitters, do not describe

conventional microscopy, and fail to provide unified concepts of resolution for all optical methods.

Here we introduce a measure of resolution, the information transfer function (ITF), that gives physical

limits for conventional and stochastic localization techniques. The ITF bounds the accuracy of image

determination as a function of spatial frequency and for conventional microscopy is proportional to the

square of the modulation-transfer function. We use the ITF to describe how emitter density and photon

counts affect imaging performance across the continuum from conventional to superresolution micros-

copy, without assuming emitters are sparse. This unified physical description of resolution facilitates

experimental choices and designs of image reconstruction algorithms.
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Exploring the physical bounds on light microscopy has
been a mainstay activity in theoretical optics. In classical
[1,2] and in most modern treatments [3] the limits on
resolution have been derived using deterministic field
theories for optical diffraction. This ignores photon shot
noise, the dominant noise source in perhaps most modern
microscopy applications. Digital image processing algo-
rithms that take noise into account can achieve subpixel
superresolution by combining multiple conventional im-
ages of a single sample or scene [4,5]. However, the poor
performance of these techniques in recovering high spatial
frequency information led to the recognition that prior
information about image structure is generally essential
for attaining superresolution [6]. Yet, existing theories do
not provide physical limits on image estimation based on
the noise and prior information available from specific
measurement schemes.

Here we study the physics of superresolution imaging by
stochastic localization of single molecules, as in photo-
activated localization microscopy (PALM) and stochastic
optical reconstruction microscopy (STORM), which
achieve superresolution via the spatial localization of
single fluorescent molecules [7–10]. We stress that
stochastic localization is a distinct measurement and
computational analysis procedure that exploits the prior
knowledge the active fluorophores are dilute. Previous
theories of superresolution from digital image processing
do not describe the specific form of prior information that

has allowed stochastic localization techniques to success-
fully achieve tenfold or better superresolution beyond the
conventional diffraction limit. Our theory provides unified
performance limits for stochastic localization, conven-
tional microscopy, and the entire class of digital image
processing algorithms for subpixel superresolution.
Our work builds on earlier applications of estimation

theory that amended classical notions of resolution by
including fluctuations in the propagating fields [11,12].
Instead, we consider photon statistics and model the
stochastic activation and measurement of individual mole-
cules. Our resolution measure, termed here the information
transfer function (ITF), limits how well one can determine
a specimen’s features at each spatial frequency. The ITF
thus replaces the modulation-transfer function (MTF) but
with an expanded range of explanation, covering conven-
tional and stochastic localization microscopy. Importantly,
for conventional microscopy the ITF reduces to the square
of the MTF, scaled by the number of observed photons,
thereby preserving physicists’ basic intuitions about imag-
ing. Overall, our formalism unifies long-standing work
on the spatial filtering properties of optical imaging with
recent efforts to describe the limits imposed by photon
shot noise.
We consider an image taken from a specimen of m

fluorophores, all of the same color and located in the
sample plane at fxjg. The experimental data are the counts,

fNlg, of photons detected at pixel l which is located in the
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image plane at yl, l ¼ 1 . . .L. The probability, P, of
observing the data is

PðfNlgjfxjgÞ ¼
YL
l¼1

e��l
�Nl

l

Nl!
;

�l ¼
Xm
j¼1

pjhðyl � xjÞ�yl
(1)

where pj is the intensity of the jth emitter, �yl is the pixel

area, and the point-spread function (PSF), h, is normalized,P
L
l¼1 hðylÞ�yl ¼ 1. We idealize the detector by assuming

uniformly distributed pixelswith infinitesimal area,�yl ! 0,
so thatNl 2 f0; 1g. This neglects the effect of finite pixel size.
In this limit we can rewrite Eq. (1) as a function of the
locations in the image plane, fzkg, of N ¼ P

lNl detected
photons: PðfNlgjfxjgÞ ¼ PðfzkgjN; fxjgÞPðNÞ, where PðNÞ
is the probability that N photons are detected, and

PðfzkgjN; fxjgÞ ¼
YN
k¼1

Xm
j¼1

pjP
m
i¼1 pi

hðzk � xjÞdzk: (2)

This satisfies
R
PðfzkgjN; fxjgÞdz1 . . . dzN ¼ 1. Local-

ization microscopy finds estimates, fx̂jg, of fxjg based on

the observations, fzkg.
To study the limits of this technique, we use a key tool

from estimation theory, the Cramér-Rao lower bound [13]
(CRLB), which bounds the accuracy of any estimator, fq̂ig,
of a set of parameters, fqig: ½E� J�1� � 0. Here Eij �
hðq̂i � qiÞðq̂j � qjÞ�i is the estimator covariance matrix,

Jij � �h @2

@qi@q
�
j
logPðfzkgjfqigÞifzkg is the Fisher information

matrix, and q̂i is assumed unbiased, i.e., hq̂ii ¼ qi. The
angular brackets, h� � �i, denote averages over the stochastic
locations of detected photons, distributed according to
Eq. (2). The CRLB states ½E� J�1� is positive semidefin-
ite, implying that the diagonal elements (the mean squared
errors) obey Eii ¼ hjq̂i � qij2i � ½J�1�ii. This inequality
bounds estimator accuracy for any set of image parameters,
such as the emitters’ locations (qi � xi) [14,15], or, as in
our theory, the real-space [qx � IðxÞ] or spatial frequency
[qk � IðkÞ] components.

Previous applications of the CRLB to emitter localiza-
tion did not yield limits on how well entire images can be
determined, nor formalism to supersede the PSF and MTF.
To illustrate, consider a 2D scene composed of two equally
bright emitters [14]. We choose a coordinate system in
which the emitters lie on the x axis at ðx; yÞ ¼ ð�dx; 0Þ.
J is diagonal in the basis given by the mean position and
separation vector [Fig. 1(a), inset]. Figure 1(a) shows the
corresponding CRLBs in units of the width of the Gaussian
PSF, � [16]. Similar results hold for an Airy disk PSF, and
when the two emitters are not equally bright [16]. If dx 	
�, J 
 N

�2 for each coordinate. When dx � �, one cannot

unambiguously assign each photon to its correct emitter
and Jdy;dy , Jdx;dx both vanish. This is why in stochastic

localization microscopy one typically uses a very dilute
density of simultaneously active emitters, �a � ��2, to
prevent emitters’ images overlapping.
This analysis extends to scenes of more emitters

[Figs. 1(b)–1(d)], but in the general case localization ac-
curacy varies with the scene’s details. The Fisher informa-
tion for m emitters is a 2m� 2m matrix whose entries
depend on the emitters’ 2m position coordinates. For m>
2 there is no general coordinate system diagonalizing J. A
resolution measure that varies from sample to sample is
inconsistent with traditional concepts of resolution and has
limited practical utility.
We introduce a measure, the ITF, that gives resolution

bounds for all specimens and generalizes the MTF to
account for photon statistics. The ITF provides the CRLB
for image estimation as a function of spatial frequency; this
conception of resolution applies equally well to conven-
tional or stochastic localization microscopy.
Consider an image scene, represented by a positive

intensity function, IðxÞ, normalized to have unit integral.
In biological microscopy, I may represent the spatial
probability density of fluorescently labeled cellular or
protein structures. We seek a bound on the squared error

of an unbiased estimator, ÎðkÞ. The ITF, FðkÞ, bounds the
error in estimating the image frequency components:

FIG. 1 (color). Real-space analysis of localization accuracy
depends on the configuration of emitters. (a) A scene with two
emitters has 4 degrees of freedom (inset). The Cramér-Rao lower
bound (CRLB) for estimation of each of the 4 coordinates (solid
lines; red, x0; cyan, y0; green, dx; blue, dy) matches the variance

of a maximum-likelihood estimator (h). (b)–(d) Real-space
analysis for a scene containing 6 emitters. (b) Observed intensity
at each pixel. (c) Fisher information matrix for the emitters’ 12
X, Y coordinates. (d) Localization accuracy, determined by
simulating 100 independent estimates of the emitters’ locations,
with n ¼ 17 photons per emitter, chosen for illustrative pur-
poses. Contours denote 2 s.d. from the true position of each
emitter, as determined by ½Jij��1.
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EIðkÞ � hjÎðkÞ � IðkÞj2i � 1=FðkÞ. (In practice it may be

impossible to define unbiased estimators for some image
components, especially at high spatial frequencies [16]. A
generalization of the CRLB relates FðkÞ to the minimum
variance of a biased estimator [13]. Even when no unbiased
estimator exists, the ITF provides an objective figure of
merit for image resolution that is based on the measure-
ment statistics.)

Physical intuition suggests the ITF should vanish at
large k and be proportional to N, since each photon carries
equal Fisher information. We first calculate the ITF exactly
using three key simplifying assumptions. First, we ignore
photons that cannot be assigned to an emitter due to over-
lap; the case of overlapping emitters will be considered
below. This assumption simplifies the probability, Eq. (2).
If nj is the number of detected photons from the jth

emitter, and assuming the fluorophores’ locations are ran-
domly sampled from the distribution, IðxÞ, we have [16]:

PðfzijgjIÞ ¼
Ym
j¼1

Z
dxj

Ynj
i¼1

hðzij � xjÞIðxjÞ: (3)

Second, assuming the PSF, h, is Gaussian, we can compute
the integral:

Z
dxj

Ynj
i¼1

e�½ðzij�xjÞ2=2�2�IðxjÞ / ~Injðx̂jÞ
Ynj
i¼1

e�ð1=2�2Þðz2ij�x̂2
j Þ

(4)

where x̂j � 1
nj

Pnj
i¼1 zij is the centroid of the observed pho-

tons’ locations, and ~Injðx̂jÞ �
R
dxjIðxjÞe�ðnj=2�2Þðxj�x̂jÞ2

ðnj=2��2Þ is a blurred version of the true image with blur-

ring scale�=
ffiffiffiffiffi
nj

p
[16]. Third, we assume each emitter emits

the same number of photons, nj ¼ n; numerical results show

that a more realistic calculation with Poisson-distributed nj
has a nearly identical result [16]. We find

JIðk1Þ;I�ðk2Þ ¼me�½ð2��Þ2=2n�ðk2
1
þk2

2
ÞZ dx̂

e�2�iðk1�k2Þx̂
~Inðx̂Þ

: (5)

Using the normalization of the image and the PSF,R
dx̂~Inðx̂Þ ¼ 1, we invert the Fisher information matrix to

compute the ITF:

F0ðkÞ ¼ 1

½J�1�IðkÞ;I�ðkÞ
¼ A�ee

�ð2�k�Þ2=n (6)

where A is the field of view area and �e is the total density of
emitters; see Fig. 2(a). (Note�e appearing here is the density
of all emitters observed in the experiment, whereas �a in-
troduced above is the density of simultaneously activated
emitters in a single time frame.)

This result is derived more explicitly in [16] and shows
that the ITF is an image-independent, universal limit valid
for any scene. Equation (6) shows that superresolution
hinges on the ability to have n 	 1; in practice

n� 100–104 or more. In conventional microscopy, indi-
vidual emitters may contribute more than one photon to the
image, but since photons cannot be reliably assigned to the
correct emitter their statistics are equivalent to the case
n ¼ 1. Increasing the emitter labeling density, �e, reduces
the error variance at all spatial frequencies but has little
effect on the threshold frequency at which the ITF becomes
vanishingly small [Fig. 2(a)].
We can also compute the ITF exactly, with no restriction

on the PSF, for conventional microscopy (n ¼ 1). In this
case Eq. (3) factorizes into a product of independent
contributions from each photon, and the ITF is [16]:
FðkÞ ¼ NjhðkÞj2. This result connects the ITF directly to
the conventional MTF.
Both of these exact results are special cases of our main

finding, which is a general bound on the ITF for any PSF. If

the MTF is bounded by a Gaussian, jhðkÞj  e�ð2�k�Þ2=2,
then we find [16]:

FðkÞ  CF0ðkÞ; (7)

where C is a constant that depends on the image but not on
k, A or �e.

FIG. 2 (color). The information transfer function, FðkÞ, bounds
image estimation accuracy. (a) F0ðkÞ for conventional imaging
(n ¼ 1 photon/emitter; blue and red curves) and superresolution
(n ¼ 100, green and cyan). (b) Mean squared localization error
for a truncated Airy disk PSF (width parameter �, defined in
[16]) analyzed by maximum-likelihood fitting (red) approaches
the Fisher limit for n * 100 photons. The effects of parameters
on image quality are shown in simulations of a synthetic image
(c), and of microtubules in a mammalian cell (d). The top row
shows the true sample, lower rows show estimates using (from
the top) �e�

2 ¼ f10; 10; 103; 103g and n ¼ f1; 100; 1; 100g. Scale
bars are 1 �m, �e is the total emitter density and n is the number
of photons per emitter. Simulations used an Airy disk PSF (width
� ¼ 200 nm), and the true image in (d) is based on experimental
data from [22].
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We now consider how the ITF applies in the case the
emitters’ images overlap, which is common when the
density of active emitters, �a, approaches ��2. Several
computational procedures have recently been proposed
for analyzing data from such crowded scenes to speed up
superresolution image acquisition, but the fundamental
limits on resolution and speed remain unknown [17–21].
We show that the spatial frequency-dependent ITF is gen-
erally applicable and smoothly depends on �a.

To derive how the ITF depends on �a, we must special-
ize to images consisting ofm emitters. (More generally, the
following model applies to images of M emitters obtained
in M=m distinct rounds with exactly m active emitters
per round. Each round contributes independent informa-
tion, so the total ITF is the sum of the ITF for each.)
The image is IðxÞ ¼ 1

m

P
m
j¼1 �ðx� xjÞ in real space,

or IðkÞ ¼ 1
m

P
m
j¼1 e

�i2�k�xj in the frequency domain.

We can compute FðkÞ through its relation to the

real-space Fisher information matrix [13,16]: 1=FðkÞ �P
m
i;j¼1

@IðkÞ
@xi

J�1
ij

@I�ðkÞ
@xj

. Conventional microscopy corre-

sponds to �a 	 ��2. In this limit we may approximate
the Poisson statistics of photon shot noise as additive
Gaussian fluctuations in intensity, valid when many pho-
tons are detected per pixel [16]. The result matches the
form derived above for general images when n ¼ 1 photon
is observed per emitter [Fig. 3(a), solid black curve].

We also reconsider superresolution microscopy with
sparse emitters, �a � ��2. Here the Fisher information

matrix is diagonal, Jij ¼ nJð1Þ�ij, where J
ð1Þ is the Fisher

information per photon for localizing a single emitter [16].

The ITF, FðkÞ ¼ A�e
nJð1Þ
ð2�kÞ2 , declines only quadratically

with k [Fig. 3(a), black dot-dashed line]. Prior knowledge
that the image structure consists of m discrete emitters
improves estimation as comparedwith a completely general
image. Hence, the ITF here is strictly greater than the
previous bound, Eq. (7), derived for a general image with
n > 1. However, in both cases, the highest resolvable spatial
frequency is proportional to

ffiffiffi
n

p
.

Besides providing a unified formalism for these two ex-
tremes, the ITF can quantify the trade-off between image
resolution and acquisition time as a function of the density of
activated emitters. To do this, we computed the ITF for
simulated specimens with emitters at a range of densities.
The ITF smoothly transitions between the low and high
emitter density regimes, Fig. 3(a). In live-cell imaging, the
time to acquire an image, T, is a constrained resource. For
fixedT, the number of detected photons scales asN / B�aT,
where B is the average emitter brightness. There is thus a
trade-off between achieving superresolution, by working at
low�a, and increasing the signal-to-noise ratio by collecting
more photons [Figs. 3(b) and 3(c)]. An extremely lowdensity
of emitters is suboptimal, with FðkÞ falling off as �a (blue
curve) for frequencies above the diffraction limit (vertical
dashed line). Our simulations reveal the optimal active

emitter density, �opt
a , that maximizes the ITF for each k,

Fig. 3(d). The sum of the ITF over all frequencies greater
than the conventional diffraction limit, Fig. 3(e), ismaximum

around�
opt
a �2 ¼ 0:016, which provides sufficient separabil-

ity for localizing neighboring emitters without wasting time
by overly diluting the emitters.
In summary, we used estimation theory to calculate

the ITF, a unified bound on image estimation accuracy,
for stochastic localization and conventional fluorescence
microscopy. For completely general images, the key pa-
rameter is the number of observed photons per emitter, n.
In conventional microscopy (n ¼ 1) the ITF reduces
to the square of the MTF times the total number of ob-
served photons. This result provides a performance bound
for superresolution techniques that combine multiple,
shifted images or photographs [4,5]. Such techniques can
overcome undersampling due to finite pixels, but the fun-
damental resolution limit imposed by optical diffraction is
described by the ITF for conventional microscopy [6].

FIG. 3 (color). ITF for images of discrete emitters reveals the
optimal density. (a) ITF for a fixed number of photons, N, with
an Airy disk PSF. The Fisher information about emitter location
for an isolated emitter is Jð1Þ ¼ ��2 per photon, and N ¼ nA�e

is the total number of observed photons. The ITF declines
quadratically for superresolution techniques with sparse labeling
(�a � ��2, dot-dashed black line). For conventional micros-
copy with dense labeling (�a 	 ��2) the ITF declines more
sharply (solid black curve) and goes to zero at the diffraction
limit (black dashed line). Colored curves show the median ITF
taken over an ensemble of random simulated scenes with
�a�

2 ¼ 0:001 (blue), 0.025 (green), 0.1 (red) and 0.2 (cyan).
Error bars are �1 s:d: (b) ITF for a fixed acquisition time.
(c) Contour plot showing the ITF as a function of emitter density
and spatial frequency for fixed imaging time. Vertical colored
lines correspond to curves in (a) and (b). Black horizontal line
denotes the conventional diffraction limit. Gray line indicates the
emitter density that maximizes the ITF at each spatial frequency.
(d) The optimal emitter density as a function of k. (e) The ITF
per unit of image acquisition time, summed over all spatial
frequencies greater than the conventional diffraction limit.
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Overall, the ITF formalism reveals fundamental resolu-
tion limits on fluorescence microscopy, unifying the con-
ventional concepts of resolution with those developed
separately for stochastic localization microscopy. The
ITF also fulfills the long-standing goal of characterizing
how resolution depends on the unavoidable limitations
imposed by photon statistics [3,11,12]. Further, the ITF
facilitates principled choices of experimental parameters
that optimize imaging performance at any chosen length
scale. Although improved localization and image estima-
tion algorithms will surely continue to emerge [17–21], our
work already provides the fundamental physical limits on
the possible improvements. The ITF bounds the perform-
ance of any estimation procedure in fluorescence micros-
copy, regardless of emitter density.
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