Cell Reports

Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys

Graphical Abstract

Highlights

- Ca\(^{2+}\) imaging with a miniature microscope demonstrated in marmoset motor cortex
- Neuronal populations during naturalistic behavior recorded
- The technology allows study of human-relevant behavior such as social interactions

Authors

Takahiro Kondo, Risa Saito, Masaki Otaka, ..., Kenji F. Tanaka, Junichi Ushiba, Hideyuki Okano

Correspondence

ushiba@brain.bio.keio.ac.jp (J.U.), hidokano@a2.keio.jp (H.O.)

In Brief

Kondo et al. demonstrate calcium imaging from neuronal populations using a miniature fluorescence microscope in naturally behaving non-human primates (NHPs), common marmosets. This technique marks an advance beyond methods that use fixed head positioning, which limits the study of complex, self-determined behaviors such as social interactions or fear and anxiety.
Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys

Takahiro Kondo,1,2,14 Risa Saito,3,14 Masaki Otaka,3,14 Kimika Yoshino-Saito,1,4 Akihiro Yamanaka,5 Tetsuo Yamamori,6 Akya Watakebe,6 Hiroyuki Mizukami,7 Mark J. Schnitzer,8,9,10 Kenji F. Tanaka,2,11 Junichi Ushiba,12,13,* and Hideyuki Okano1,2,15,*

1Department of Physiology, Keio University School of Medicine, Tokyo, Japan
2Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
3Graduate School of Science and Technology, Keio University, Kanagawa, Japan
4Japan Society for the Promotion of Science, Tokyo, Japan
5Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
6Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
7Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
8James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA, USA
9CNC Program, Stanford University, Stanford, CA, USA
10Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
11Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
12Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
13Keio Institute of Pure and Applied Sciences (KiPAS), Kanagawa, Japan
14These authors contributed equally
15Lead Contact
*Correspondence: ushiba@brain.bio.keio.ac.jp (J.U.), hidokano@a2.keio.jp (H.O.)
https://doi.org/10.1016/j.celrep.2018.07.057

SUMMARY

To understand brain circuits of cognitive behaviors under natural conditions, we developed techniques for imaging neuronal activities from large neuronal populations in the deep layer cortex of the naturally behaving common marmoset. Animals retrieved food pellets or climbed ladders as a miniature fluorescence microscope monitored hundreds of calcium indicator-expressing cortical neurons in the right primary motor cortex. This technique, which can be adapted to other brain regions, can deepen our understanding of brain circuits by facilitating longitudinal population analyses of neuronal representation associated with cognitive naturalistic behaviors and their pathophysiological processes.

INTRODUCTION

There is considerable interest in non-human primates (NHPs) as a neuroscientific model. NHPs can be used to study the neural circuits underlying social, cognitive, and motor behaviors that are highly relevant to humans. Two-photon microscopy, in combination with fluorescent, genetically encoded calcium indicators, has allowed the visualization of subcellular, single cellular, and ensemble neural dynamics and has become feasible in head-fixed monkeys (Nauhaus et al., 2012; Sadakane et al., 2015a; Seide-mann et al., 2016; Yamada et al., 2016; Li et al., 2017; Ebina et al., 2018). However, complex behavior such as social interaction cannot be properly investigated using head fixation protocols. Furthermore, neural activities may differentially correlate with behaviors under head-fixed conditions compared to more natural conditions (Ziv and Ghosh, 2015). Miniaturized microscopes, in conjunction with an implantable microendoscopic lens, have enabled optical access to deep-brain neural ensembles in freely moving rodents (Ghosh et al., 2011). Here, we combined an optimized system for adeno-associated virus (AAV) vector expression of GCaMP with the appropriate microendoscope probe in the common marmoset (Callithrix jacchus). Thus, we demonstrate endoscopic miniature microscope imaging of multi-neuronal calcium transients in behaving NHPs.

RESULTS

To monitor task-related neural activity of primary motor cortex (M1) neurons, we first identified the left M1 via intracortical microstimulation (Figures 1A and S1A–S1C). Then, we injected AAVs expressing the Ca2+ indicator GCaMP6f (Chen et al., 2013) into the deep neocortical layers of the arm movement-related region (Figures S1C–S1H). We took advantage of the tetracycline-controlled transcriptional activation (Tet) system, an enhanced gene induction strategy, to sufficiently induce GCaMP6f and subsequently visualize transfected cells using an endoscope (Figures 1B and S2A). Furthermore, we optimized GCaMP6f levels by doxycycline (DOX) administration (Figures S2B and S2C). We developed a monitoring system to track Ca2+ levels in 80–240 cells in a single field of view in individual marmosets (male, n = 3) (Figure 1C). We tested the system capability during naturalistic behavior in the marmosets, who engaged in a lever-pulling task while sitting (Figure 1D), and observed the activity of individual neurons during the task (Figure 1E). We...
The computational extraction (Mukamel et al., 2009) of the Ca²⁺ dynamics of individual cells from the imaging data and detected the Ca²⁺ events (Figures 1E and S3). We found that a subset of neurons was selectively active at the time during which the right forearm reached for the lever; other neurons were occasionally active during the rest period (Figure 1F). Overall, we found an increased incidence of Ca²⁺ events (12.5 ± 2.4, mean ± SD) during the lever-pulling task (Figures 1F and 1G). We next tested different and more naturalistic behaviors. To adapt to three-dimensional, rapidly moving marmosets with easily tangled microscope wire, we subjected the animals to a ladder-climbing task and found a movement-related increase in Ca²⁺ event incidence (Figure S4; Video S1).

What do these M1 neuronal activities encode during naturalistic voluntary arm movement? To address this question, the marmosets performed a seated bi-directional arm-reaching task (Figure 2A). We then employed a computational two-class discriminator to the neuronal Ca²⁺ data to decode the arm movement directions (STAR Methods). In this task, movement-direction-sensitive Ca²⁺ exciting neurons were observed during reaching (Video S2). We used partial least-squares discriminant analysis (PLS-DA) (Wold et al., 1984) to identify the neurons involved and the times at which information regarding movement direction occurred. The reaching movement sequences were segmented into three periods: before reaching onset (PRE-M), during reaching movement (MOV), and reaching offset (POST-M) (Figure 2B). Ca²⁺ excitation was detected in the MOV phase, as well as in the absence of arm movement during the PRE-M and POST-M periods (Figure 2C). PLS-DA, applied to the Ca²⁺ data acquired during each of the three periods, was able to accurately decode the reaching direction (marmoset M: PRE-M, 83.2% ± 5.4%; MOV, 90.1% ± 3.4%; POST-M, 82.1% ± 7.4%; mean ± SD) (Figure 2D).

The weight vector $a_{m,t}$ in the PLS-DA model, representing the extent of Ca²⁺ data contribution in decoding at the mth neuron and the tth frame, was normalized to a Z score; neurons with a Z score > 3 (upper 10th percentile during MOV in marmoset M) were defined as movement-direction-sensitive neurons. The number of movement-direction-sensitive neurons detected was 7 in PRE-M (3.42% of identified neurons), 20 in MOV (9.76%), and 8 in POST-M (3.90%) in marmoset M (see Table S1 for marmosets W and S). These neurons showed...
time- and phase-locked Ca$^{2+}$ transients below the event detection threshold (Figure 2E). None of the other 170 neurons exhibited directional responses (e.g., neuron 110). Decoding using only these movement-direction-sensitive neurons kept high accuracy (e.g., marmoset M: PRE-M, 92.3% ± 11.9%; MOV, 90.7% ± 9.0%; POST-M, 80.0% ± 12.5%; mean ± SD).

In Figure 2F, we show the anatomical distribution of movement-direction-sensitive neurons. Neurons contributing to neural decoding during PRE-M and MOV (Figure S5), and the movement-direction-sensitive neurons in PRE-M and MOV did not contribute to neural decoding in POST-M (Table S1).

DISCUSSION

We developed a technique for endoscopic miniature microscope imaging in behaving NHPs, common marmosets, and monitored motor-related Ca$^{2+}$ transient dynamics of M1 during several motor tasks. Using a longer gradient refractive index (GRIN) lens, the imaging method established in the present study is compatible with studies in imaging deeper brain areas. In addition, we developed the marmoset ladder apparatus to test a more naturalistic behavior with rapidly, freely moving marmosets. This apparatus may be expanded to other semi-open field behavioral procedures, such as the maze task and treadmill task (Foster et al., 2014). We also monitored motor-related Ca$^{2+}$ transient dynamics of M1 during the bi-directional arm-reaching task. To
date, electrophysiological and fMRI studies indicate that M1 encodes information not only in motor planning and execution (Shenoy et al., 2013) but also in post-processing of movement (Hadipour-Niktarash et al., 2007; Orban de Xivry et al., 2011; Inoue et al., 2016). In a two-photon calcium imaging study in rodents, M1 individual neurons exhibited heterogeneous correlations with movement during even a simple lever-pull task (Peters et al., 2017). In the present study, the bi-directional arm-reaching task showed that M1 individual neurons exhibited heterogeneous activity, and we observed reaching movement-direction-sensitive neurons that were active in the POST-M but rarely recruited in the PRE-M or MOV. Further insights about the functional organization of motor cortex during reaching would be gained by using this technique.

This technology will make it possible to dissect large-scale neural circuits during human-relevant behavior under natural conditions, enabling the study of complex behaviors, including social interaction (Miller et al., 2016), fear, and anxiety (Barros and Tomaz, 2002; Shiba et al., 2017), and cognitive motor tasks. Furthermore, the relatively large marmoset brain will enable implantation of a pair of GRIN lenses near brain regions to monitor two interconnected areas, for example, M1 and the striatum, without using a complex, specially customized microscope (Lecoq et al., 2014). Consequently, the combination of this technique with transgenic marmoset technologies has the potential to transform our understanding, diagnosis, and treatment of human brain diseases (Izpisua Belmonte et al., 2015; Okano et al., 2016).

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Intracortical microstimulation (ICMS) and adeno-associated virus (AAV) injection
 - Lens probe insertion and fixation
 - AAV production and purification
 - Doxycycline (DOX) treatment
 - Ladder-climbing task
 - Lever-pull and pellet retrieval tasks
 - Data processing
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - Detection of spike events from Ca2+ transients
 - Partial least-squares discriminant analysis (PLS-DA)
 - Decoding arm-reaching movement direction using PLS-DA
 - Neural order shuffling

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, one table, and two videos and can be found with this article online at https://doi.org/10.1016/j.cerep.2018.07.087.

ACKNOWLEDGMENTS

We thank Osamu Sadakane, Hanuhiiko Bito, Makoto Fukushima, Norio Takata, and the Inscopix member for technical support. This work was supported by a Grant-in-Aid for Young Scientists (B) (JP17K13067), and the Brain/MINDS project of the AMED (JP17dm0207002 and JP17dm0207001).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

J.U. is a co-founder of Connect and jointly working with Panasonic. H.O. is a paid scientific advisory board member of San Bio and K Pharma. M.J.S. is a co-founder of and scientific consultant for Inscopix, which produced the miniature microscope.

Received: January 2, 2018
Revised: April 5, 2018
Accepted: July 16, 2018
Published: August 21, 2018

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Fluorescent Protein (GFP) Antibody</td>
<td>Medical & biological laboratories</td>
<td>MBL598; RRID: AB_591816</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAV9-ehSyn-I-GCaMP7</td>
<td>A. Yamanaka</td>
<td>N/A</td>
</tr>
<tr>
<td>AAV2/1-Thy1S-I-TA</td>
<td>Sadakane et al., 2015a</td>
<td>N/A</td>
</tr>
<tr>
<td>AAV2/1-TRE3-GCaMP6f</td>
<td>Sadakane et al., 2015a</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Sigma Aldrich</td>
<td>D9891</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common marmoset (male)</td>
<td>RRD, RIKEN</td>
<td>N/A</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATLAB</td>
<td>MathWorks</td>
<td>R2016b</td>
</tr>
<tr>
<td>nVista HD Software</td>
<td>Inscopix</td>
<td>N/A</td>
</tr>
<tr>
<td>Mosaic</td>
<td>Inscopix</td>
<td>1.2</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nVista system</td>
<td>Inscopix</td>
<td>Version 2.0</td>
</tr>
<tr>
<td>Prism probe</td>
<td>Inscopix</td>
<td>1050-002203</td>
</tr>
</tbody>
</table>

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hideyuki Okano (hidokano@a2.keio.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three common marmosets (Callithrix jacchus; male, body weight: 300–400 g, ages 3–6 years) were used in the present study (identified by letters M, S, and W). All animal experiments were approved by the Animal Research Committee of Keio University School of Medicine (approval number: 11006), and conformed to the National Institutes of Health (1996) guidelines.

METHOD DETAILS

Intracortical microstimulation (ICMS) and adeno-associated virus (AAV) injection

The locations of the forearm primary motor cortex (M1) area were mapped with ICMS as described previously (Kondo et al., 2015). Marmosets were anesthetized by intramuscular (i.m.) injection of ketamine (30 mg/kg) and xylazine (2.5 mg/kg). Body temperature and oxygen saturation levels were monitored. Anesthetized animals were mounted on a custom-made stereotaxic frame (IMPACT-1000B; Muromachi Kikai, Japan) (Figure S1A), and two polyetheretherketone (PEEK) pipes (Muromachi Kikai, Japan) were attached to the skull with dental cement (UNIFAST II, GC, Japan). Two pipes were placed in parallel over the frontal and occipital areas, and both pipes were flanked by small stainless steel bars.

A few days later, the marmosets fitted with head pipes were sedated with an i.m. injection of ketamine (30 mg/kg), atropine sulfate (0.05 mg/kg), ampicillin (50 mg/kg), and dexamethasone (0.30 mg/kg), and sat in a custom-made stereotaxic chair (Muromachi Kikai, Japan). The two pipes were used for head fixation- this allowed us to avoid the use of painful tooth/eye and ear bars. Thus, the marmosets received ICMS under more natural conditions without xylazine treatment (Figure S1B).

A large craniotomy (5 x 5 mm square, without durotomy) was made over the area of the left motor cortex, and tungsten electrodes were implanted to deliver ICMS (10 biphasic pulses composed of 0.2-ms cathodal and 0.2-ms anodal pulses, at 333 Hz). The location of the forearm M1 area was estimated based on the observation of evoked forearm motor responses.

After ICMS, the marmosets were anesthetized using 1%–1.5% isoflurane and an AAV solution was injected into two sites (each site was separated by 1 mm) of the forearm M1 area, 2 mm below the cortical surface. The 500 nL of AAV solution mixture
AAV vectors were produced using the AAV Helper-Free System (Agilent Technologies, Inc., Santa Clara, CA). Detailed methods used for AAV production and purification were described previously (Konishi et al., 2008). pAAV-Thy1s-tTA and pAAV TRE3-GCaMP6f plasmids were used to produce AAV (Sadakane et al., 2015b).

Doxycycline (DOX) treatment
DOX (D9891; Sigma Aldrich, St. Louis, MO) was administered orally using a syringe (2 mg of DOX in 20 mL of 20% honey-syrup solution). To ensure GCaMP expression control by DOX, we checked the GCaMP expression level 3 d after the first administration; an extra 1 mg of DOX was administered as needed. Then, 1 mg of DOX was administered approximately once per month to maintain the desired GCaMP expression levels.

Ladder-climbing task
The ladder apparatus comprised side walls made of clear Plexiglas (1.4 m in height) and wood rungs (4 mm in diameter), with a distance of 4 cm between rungs (Figure S4A). The marmosets were trained to climb the ladder from a carrying cage at the bottom to another carrying cage at the top. Then the carrying cage containing the marmoset was moved to the bottom, and the marmoset began climbing again. To climb up the apparatus (1 session), each hand needed to grip the rungs 5–8 times. The marmosets were pre-trained on the ladder-climbing task before neural recording. Pre-training was performed over 3–5 d (5–10 sessions per day), and testing began when the marmosets climbed up without stopping or turning around.

Lever-pull and pellet retrieval tasks
Each marmoset was trained to wear a custom-made jacket with a Velcro strip, which was used to attach the marmoset to a back plate with a rigid bar (Figure 1D). Each marmoset was habituated for 1–2 weeks so that they would remain calm during the tasks. After successful habituation, the marmosets were trained to perform the following tasks before neural recording.

Lever-pull task: The grip (ball-shaped, 8 mm in diameter) of the lever was located 30 mm in front of the marmoset’s right hand (Figure 1D). The animals were pre-trained to pull the lever horizontally. Each marmoset performed the task ~20 times, once per day.

Pellet-reaching task: The pellet (sweet marshmallow, 5 mm in diameter) was placed 30 mm in front and 45° to the right or left side of the home position (Figure 2A). Once a pellet was retrieved, the marmoset needed to wait 3 s, and the next pellet was placed on the other side. Each marmoset performed the task 40 times, once per day.

Data processing
Calcium imaging data were acquired using a miniaturized fluorescence microscope (nVista; Inscopix, Palo Alto, CA) at 20 frames/s. The acquired images were spatially downsampled by a factor of 2 using Mosaic software (Inscopix, Palo Alto, CA). We then performed rigid image registration to correct for lateral brain displacement using the Mosaic software. To normalize the fluorescence intensity, we estimated the gain correction factor for each 2D image.
signals to the average fluorescence of the frame, we calculated registered images as percent change (ΔF) over baseline (F): $\Delta F(t)/F = (F(t) - F)/F$. Ca$^{2+}$ transients from individual cells, which predominantly reflect action potentials with a minor contribution from subthreshold potentials (Berger et al., 2007), were identified with established cell-sorting algorithm based on principal component analysis (PCA) and independent component analysis (ICA) (Mukamel et al., 2008). Noted here that PCA-ICA algorithm, as its nature, minimizes signal contaminations from nearby cells or movement-related artifacts (Figure S3). This automated independent component sorting algorithm was used widely in the regions of hippocampus (Xia et al., 2017), sensorimotor cortex (Wang et al., 2017) and other multiple regions in rodents.

QUANTIFICATION AND STATISTICAL ANALYSIS

Detection of spike events from Ca$^{2+}$ transients

For each selected calcium transient trace from a single cell, we subtracted the median trace (20 s sliding window) to minimize negligible fluctuations from baseline. Further, an estimate of the amplitude of fluctuation from baseline was calculated using median absolute deviation (MAD):

$$\text{MAD} = \text{median}_j \left(|X_t - \text{median}_i(X_j)| \right),$$

where i and j take the values $1, 2, 3, ..., n_{\text{frames}}$, and X_t is the intensity of the signal at the i-th frame. MAD is a statistical distribution that is more resilient to outliers in a dataset than the standard deviation. Using the calculated MAD for each trace, calcium events were detected as follows.

First, the algorithm identified the event timing t, where the slope of X_t turns from positive to negative. These positive peaks were classified as candidate Ca$^{2+}$ events. Next, the algorithm identified the most previous event from these positive peaks, where the slope of X_t turns from negative to positive. The MAD value was added to the amplitude of these troughs, and the value was defined as the Ca$^{2+}$ event detection threshold for the subsequent peaks. The positive peaks exceeding this threshold were treated as Ca$^{2+}$ events.

A blinded visual inspection was finally performed to confirm that the detected Ca$^{2+}$ spikes from a single cell were segregated from the signals of neighboring neurons.

Partial least-squares discriminant analysis (PLS-DA)

There are many available statistical tools to model experimental biodata; therefore, a model must be chosen carefully while considering the theoretical assumptions. M1 neurons synchronously fire in milliseconds, and coherently oscillate together at approximately 20 Hz during physical movement. Therefore, it is highly likely that Ca$^{2+}$ dynamics of M1 neurons exhibit multicollinearity. There was no prior knowledge regarding data distribution, as the present study was the first to analyze Ca$^{2+}$ dynamics of M1 neurons in naturally behaving NHPs. Model interpretability is also needed to determine the physiological relevance of the results. Hence, we used PLS-DA to decode movement direction from Ca$^{2+}$ dynamics of M1 neurons during bi-directional arm reaching.

PLS regression combines features of principal component analysis and multiple linear regression, and thereby transforms a set of correlated explanatory variables into a new set of variables that are orthogonal to each other, which is appropriate in the presence of multicollinearity (Wold et al., 1984). PLS is a mathematical estimation approach that builds a model by sequentially adding data points such that model parameters are continuously updated. PLS-DA performs a PLS regression with a dichotomous dependent variable, and is used for classification tasks. PLS-DA is a standard tool in chemometrics, and has been applied to other classification problems in science due to its applicability to multicollinearity and result interpretation (Pérez-Enciso and Tenenhaus, 2003).

Other standard models did not fit the present study, as automated variable selection procedures for logistic regression or linear discriminant analyses generate unstable prediction models in the presence of multicollinearity. When there is no prior knowledge regarding data distribution, the k-nearest neighbors algorithm is useful but is very sensitive to irrelevant variables and multicollinearity because all variables contribute equally to the model. Multilayer perceptron and support vector machine are not severely affected by multicollinearity but model interpretability is very low.

Decoding arm-reaching movement direction using PLS-DA

To predict the arm movement direction $D(i)$ in the i-th trial during bi-directional reaching, the filtered neural Ca$^{2+}$ transient signal data were pooled as the two-dimensional vector, $A_{m,t}(i)$, where m is the neuron ID, and t is time; this describes the neural and temporal information of the i-th trial. The goal of decoding was to estimate a set of weights $\{a_0, a_{m,t}\}$ so $D(i)$ could be modeled as their linear combination with $A_{m,t}(i)$

$$D(t) = \begin{cases} 1, & \text{if the direction of movement was right} \\ 0, & \text{if the direction of movement was left} \end{cases}$$

$$D(t) = a_0 + \sum_m \sum_t a_m t A_{m,t}(i) + \epsilon(i)$$

(1)
where a_0 is the intercept, $a_{m,t}$ is the weight of the component at that neuron ID and time, and $\epsilon(i)$ is the residual error at the i-th trial. The optimal number of PLS components for this recoding model was 10, determined by the minimal predictive error sum of squares. For the decoding directions, 23 of 38 trials (Marmoset M), 25 of 41 trials (Marmoset S), and 11 of 18 trials (Marmoset W) were used as training datasets, and the rest were used as test datasets for validation. The decoding was performed 10,000 times repeatedly with different combinations of train-and-test datasets to estimate a proper accuracy rate. The accuracy rate was quantified by determining the percentage of trials in which the actual and predicted directions were the same.

Weights of the prediction model, shown in the following Equation (2), were analyzed to evaluate the contribution of individual neurons to the prediction of movement direction

$$W(m) = \frac{\sum a_{m,t}}{\sum_{t} \sum_{m} |a_{m,t}|}$$

where $|\cdot|$ represents the absolute value of \cdot, and $W(m)$ quantifies the percentage contribution of the m-th neuron for decoding.

Neural order shuffling

To ensure the decoding performance, a shuffling analysis was performed after each decoding model was acquired. For each experiment, surrogate validation datasets were generated, and the decoding model obtained previously from the training data was used to make a prediction on these surrogate validation data. The expected accuracy was 50% in this case. In neural order shuffling, the neuron ID of the validation data was randomly shuffled, while the sample order remained unchanged.