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Fluorescence imaging offers expanding capabilities for recording neural dynamics in behaving mammals,
including the means to monitor hundreds of cells targeted by genetic type or connectivity, track cells over
weeks, densely sample neurons within local microcircuits, study cells too inactive to isolate in extracellular
electrical recordings, and visualize activity in dendrites, axons, or dendritic spines. We discuss recent prog-
ress and future directions for imaging in behaving mammals from a systems engineering perspective, which
seeks holistic consideration of fluorescent indicators, optical instrumentation, and computational analyses.
Today, genetically encoded indicators of neural Ca2+ dynamics are widely used, and those of trans-mem-
brane voltage are rapidly improving. Two complementary imaging paradigms involve conventional micro-
scopes for studying head-restrained animals and head-mounted miniature microscopes for imaging in freely
behaving animals. Overall, the field has attained sufficient sophistication that increased cooperation between
those designing new indicators, light sources, microscopes, and computational analyses would greatly
benefit future progress.
Introduction
For decades, the main technique for monitoring the dynamics of

individual neurons in awake behaving mammals has been extra-

cellular electrophysiological recording. Such recordings have

yielded important and diverse advances in our knowledge of

brain function. Heralded discoveries include those that related

single-cell response properties to perceptual decisions and

short-term memory, identified neurons with spiking patterns

conveying spatial information about an animal’s environment,

and revealed neural computations underlying coordinate trans-

formations crucial for directed body movements (Batista et al.,

1999; Funahashi et al., 1989; Fuster and Alexander, 1971; Haft-

ing et al., 2005; Newsome et al., 1989; O’Keefe and Dostrovsky,

1971). Today, although extracellular recording methods still

retain unique advantages, particularly regarding temporal reso-

lution, notable limitations persist regarding the difficulties of

achieving stable long-term recordings for days to weeks, target-

ing cells by genetic type or connectivity, identifying cells with

temporally sparse activity, sampling cells densely and in large

numbers (i.e., many hundreds to a thousand cells in behaving

mammals), and recording from dendrites, dendritic spines, or

axons.

Over the last decade, optical imaging methods have rapidly

advanced and emerged as increasingly potent means for cellular

level recordings in behaving animals. To date, optical imaging

and extracellular recording techniques have nicely comple-

mented each other, as the strengths of the former coincide

well with the above-mentioned weaknesses of the latter.

Conversely, cellular level imaging of neural activity generally pro-

vides poorer temporal resolution than electrophysiological

recording due to the usual reliance on fluorescent reporters of

neural Ca2+ dynamics. In the last few years, genetically encoded
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fluorescent reporters of membrane voltage dynamics have also

made substantial progress. This past year brought the visualiza-

tion of single dendritic action potentials in the live mammalian

brain using genetically encoded voltage indicators. Neverthe-

less, substantial further improvement in these indicators remains

vital (Gong et al., 2014).

In this Review, we discuss significant recent advances in

cellular imaging in behaving animals and likely directions of

upcoming progress. We consider the issues from the viewpoint

of systems engineering, which strives to optimize the overall

performance of a technological system by taking into account

the combined effects of all constituent elements, rather than

considering them individually in isolation. When applied to an

optical system for imaging neural activity, this holistic view seeks

to optimize imaging performance by taking into account all

pertinent factors, including the properties of the instrumentation

and the neural activity indicator, the photon statistics underlying

the detection of neural dynamics, and even data analyses.

Considerations of photon statistics are fundamental to any

discussion of action potential detection fidelity and timing

estimation but may be unfamiliar to many readers. Hence, we

start with background material to introduce this critical topic.

We then discuss recent advances in optical indicators of neural

activity, the complementary strengths of optical brain imaging in

head-restrained versus freely behaving animals, computational

algorithms for processing large-scale neural activity data, and

the future outlook for the field.

Photon Statistics Underlying Detection of Neural
Activity
Researchers have long sought meaningful ways to compare

imaging systems that take into account the multiple factors
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influencing the capacity to monitor neural activity with a fluores-

cent indicator. These factors include properties of the neural ac-

tivity indicator such as its sensitivity, dynamic range of signaling,

kinetics, brightness, absorption and emission spectra, and label-

ing efficiency. The properties of the optical instrumentation are

generally of equal importance and include its numerical aper-

tures of illumination and photon collection, resolution and optical

sectioning capabilities, illumination intensity at the specimen,

quantum efficiency of photon detection, dominant noise sources

in the photo-detection process, and frame or pixel acquisition

rates. Prior efforts to benchmark optical tools for monitoring

neural dynamics often focused on neural activity indicators and

characterized these through heuristic figures-of-merit or the

use of standardized experimental formats to evaluate multiple

indicators in a controlled way (Hendel et al., 2008; Hires et al.,

2008; Sjulson and Miesenböck, 2007). However, it is crucial to

have a principled theoretical framework on which to base com-

parisons.

Signal detection and estimation theories are frameworks from

engineering that provide suitable mathematical principles to

ground discussions of spike detection fidelity and the accuracy

of spike timing estimation (Marshall and Schnitzer, 2013; Sjulson

and Miesenböck, 2007; Wilt et al., 2013). An initial use of signal

detection theory to describe the optical detection of neural ac-

tion potentials correctly emphasized the physical limits on spike

detection due to the inherent stochasticity of photon emission,

transmission, and photodetection but failed to account for the

time-varying optical signals that occur in response to a neural

spike (Sjulson andMiesenböck, 2007). By applying signal detec-

tion theory to a more thorough, time-dependent mathematical

model of the signals from an activity indicator, a more recent

treatment derived a metric for the fidelity of neural spike detec-

tion under ideal experimental conditions in which photon number

fluctuations, often termed photon ‘‘shot noise,’’ are the limiting

noise source (Wilt et al., 2013). This metric, symbolized as d’, de-

scribes the physical limits of action potential detection and the

severity of the tradeoff between false-positive and false-negative

spike detection (Figure 1). (Readers may be familiar with the use

of Cohen’s d in statistics to characterize an effect size. Here d’

can be thought of as the Cohen’s d describing the magnitude

of the effect that one action potential has on the photon flux.)

Signal detection theory also enables principled comparisons

between different indicators and instrumentation, allows bench-

marking of different algorithms for spike extraction against the

physical limits, provides means to gauge the statistical confi-

dence of each detected spike, and quantifies how different opti-

cal parameters impact spike detection fidelity.

To illustrate, let’s consider evaluations of different neural activ-

ity indicators. Signal detection theory elucidates the tradeoffs

between sensitivity, dynamic range, kinetics, and brightness.

Without this mathematical approach, the tradeoffs between

these factors are hard to disentangle. For example, within the

widely used GCaMP6 family of Ca2+ indicators there exist

variants with a range of kinetics (Chen et al., 2013c). The more

sensitive variants exhibit slower decays in fluorescence intensity

following the occurrence of an action potential. Using the values

from Table S3 of Chen et al. (2013c), the slowest variant,

GCaMP6s, has only a slightly greater fluorescence response to
a single spike from a visual cortical neuron than the fastest

variant, GCaMP6f, but nevertheless offers twice the spike detec-

tion fidelity (d’) when the two are compared under otherwise

equal optical conditions. However, GCaMP6f allows more

accurate spike timing (Chen et al., 2013c), as described by signal

estimation theory (see below). More generally, when evaluating

different indicators one seeks to understand and summarize

the net effects of differences in multiple signaling parameters.

For instance, among the Fast-GCaMP Ca2+ indicators (Sun

et al., 2013), there are large variations in brightness, signaling

kinetics, and dynamic range; signal detection theory quantita-

tively describes how all these parameters interact.

The principled derivation of d’ also shows that spike detection

fidelity depends onmore than just the dynamic range of signaling

in response to a neural spike. (The latter quantity is often denoted

DF/F, to indicate the fractional change in fluorescence intensity.)

Hence, evaluations of different indicators, optical instrumen-

tation, and data analyses must properly consider all the con-

tributing factors, including the detected fluxes of signal and

background photons, and the temporal waveform of the indica-

tor’s response to a neural spike. Crucially, data sets with widely

different values of DF/F can yield equally effective spike detec-

tion, because DF/F does not account for the total number and

time course of background and signal photons detected per

optical transient. In general, joint increases in both the back-

ground and signal photon flux attained by raising the illumination

intensity will increase d’. This intensity is usually capped by the

need to avoid fluorescence photobleaching and phototoxicity,

so it is important to compare d’ values for realistic imaging con-

ditions. Moreover, in experiments with behaving animals, due to

the substantial non-stationary noise from effects such as brain

motion and hemodynamics, one generally cannot attain the

physical limit on optical spike detection as expressed by d’

values calculated for photon shot noise-limited conditions.

Nevertheless, having this limit remains useful for making quanti-

tative comparisons between the ideal cases in different optical

situations. Empirical estimations of d’ from actual data are also

useful in that they convey how much an optical study falls short

of the best-case scenario.

As a practical example of these ideas, the use of one-photon

epi-fluorescence and two-photon laser-scanning fluorescence

imaging modalities to detect cerebellar Purkinje neurons’ com-

plex spikes in live mice has yielded approximately equal spike

detection fidelities (Wilt et al., 2013). However, under identical la-

beling conditions with a synthetic Ca2+ indicator, the two-photon

imaging data exhibited DF/F values of�10%–30%, whereas the

one-photon data had DF/F values of �1%–2% (Flusberg et al.,

2008; Ghosh et al., 2011; Mukamel et al., 2009; Ozden et al.,

2008). These general observations are broadly applicable; the

differences in DF/F values stem from the lack of optical

sectioning in one-photon epi-fluorescence imaging and the re-

sulting increase in background fluorescence that diminishes im-

age and signaling contrast. Unlike two-photon microscopy,

which selectively excites fluorescence at the focal plane, in

one-photon epi-fluorescence microscopy the fluorescence

arising from planes even hundreds of microns outside the focal

plane manifests as a substantial out-of-focus background flux

that reduces the signaling contrast. Nevertheless, image pixels
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 141
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B Figure 1. Signal Detection and Estimation
Theories Quantify the Physical Limits of
Spike Detection Fidelity and Spike Timing
Estimation Accuracy in Optical Experiments
(A) Given a set of photodetector measurements, f,
the log-likelihood ratio L(f) quantifies the relative
odds that the measurements were of an action
potential or not. In general, f can include data from
multiple photodetectors or camera pixels and can
extend over multiple time bins. Formally, L(f) is a
logarithm of a ratio of probabilities, greater than 0 if
a neural spike is more likely to have occurred and
less than 0 if it is more likely there was no spike.
The decision of whether to classify f as repre-
senting a spike is enacted by setting a threshold
value of L(f); the exact value depends on the
experiment’s relative tolerances to false-positive
versus false-negative errors. To analyze a full
experiment one usually must make multiple clas-
sifications of this kind, across each successive
time bin, to attain a digitized record of the spike
train. Across the subset of all measurements that,
in reality, represent the occurrence of a neural
spike the mean value of L(f) will be positive (blue
data). Across all measurements in which no spike
actually occurred, this mean value will be negative
(red data). Comparison of the two probability
distributions of L(f), one for each of the two
hypotheses, allows an assessment of how easy or
challenging it is to distinguish the two cases. When
the limiting noise source in the experiment is
photon shot noise and the non-responsive, base-
line photon flux is greater than the signal flux in
response to a spike, the distribution of L(f) for each
of the two hypotheses is approximately Gaussian.
The metric of spike detection fidelity, d’, is the
separation in the means of the two Gaussian
distributions in units of their standard deviation
and describes the degree to which the two hy-
potheses can be reliably distinguished. The greater
the overlap area between the two distributions, the
harder on average it is to distinguish if a spike
occurred. Distributions of L(f) for d’ = 1 and d’ = 3
are plotted using signal detection theory (solid
lines) and from computer simulations of photon
statistics (histograms).
(B) One formalizes the decision of whether a spike
occurred or not by choosing a threshold value of
L(f) to serve as a decision cutoff that allows one to
classify individual measurements, f. Inset: Plotting

the probability of successful spike detection against the probability of a false alarm for different values of the decision cutoff yields a curve known as the receiver
operating characteristic (ROC) curve. Like d’, the area under the ROC curve is a metric of spike detection fidelity that does not depend on the choice of decision
threshold. Several ROC curves are plotted, indexed by their d’ values.Main panel: The area under the ROC curve is plotted as a function of the d’ value. Crucially,
the area under the ROC curve quickly approaches unity as d’ rises. This is because the overlap in the tails of the two Gaussian L(f) distributions decreases faster
than exponentially with increases in d’ (panel A). A non-intuitive but important implication is that modest improvements in d’, which has linear and polynomial
relationships to the most common optical parameters, sharply reduce the spike detection error rate. Hence, incremental improvements to indicators, cameras,
and other optical hardware can yield huge dividends toward successfully capturing neural activity.
(C) d’ depends on the signal amplitude of the neural activity indicator’s response to an action potential and on themean number of background photons collected
during the indicator’s optical transient. When the Gaussian approximation is valid, and the fluorescence emissions comprise a stationary mean baseline flux,
F0, plus a modest signal transient that arises nearly instantaneously at each spike incidence and then decays exponentially with time constant t, the expression
for d’ reduces to approximately (DF/F),O(F0t/2). This shows that indicators with prolonged optical signal transients improve spike detection, since analyses
can make use of the signal photons that arrive over the transient’s entire duration. At a constant value of DF/F, signal detection improves with increasing
background due to the concomitant increase in signal photons.
(D) Simulations of spike timing resolution. Using a brute-force maximum likelihood method for estimating the spike time, histograms of the spike timing error for
two indicators with distinct signaling kinetics are shown. Note the different time scales on the two panels. For visual clarity, histograms are normalized to a
common peak value. Simulations used 50 ms time bins.
(E) Plots of simulated spike timing resolution and the theoretically calculated Chapman-Robbins lower bound on spike timing estimation errors. The simulations
(points) generally do not attain the Chapman-Robbins lower bound (lines), especially for situations with low SNR and slow temporal dynamics. The Chapman-
Robbins lower bound should be considered a best-case for estimation variance.
(F) Simulated optical traces and detected spikes for d’ = 3 and d’ = 5. Blue traces: optical measurements shown in units of the standard deviation from the mean
photon count. Green spikes: the true spike train. Orange spikes: correctly estimated spikes. Spikes in non-orange hues: spikes estimated with errors in
frame timing. Gray spikes: false positives. Gray trace: L(f) for a moving window of nine time bins. Dashed black line: spike detection threshold given equal costs
for false positives and false negatives. Purple: threshold crossings. Spikes were detected using an iterative algorithm that assigned a spike to the instance of
the log-likelihood ratio’s maximum in each iteration. At low d’, few spikes are detected with this choice of threshold.
All panels are adapted from Wilt et al. (2013).
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in two-photon microscopy are generally sampled serially, and

laser dwell times per pixel are typically �0.1–3 ms. By compari-

son, in one-photon epi-fluorescence microscopy entire image

frames are usually taken in acquisition times of �10–100 ms.

Thus, even though the one-photon video data might seem less

impressive by eye due to the lower DF/F values, the detection

of Ca2+ transients is usually based on many more photons than

in two-photon imaging data sets. In many common situations

(but certainly not all), the magnitudes of the two counteracting

effects approximately offset each other under normal imaging

conditions, yielding comparable values of d’ for the two imaging

modalities (Wilt et al., 2013). These considerations are germane

to efforts to increase the number of cells that one canmonitor per

unit time. Imaging modalities based on serial laser-scanning

strategies are subject to basic, photon-limited tradeoffs between

the number of cells that can be sampled and the attainable time-

resolution and d’ values. Modalities in which many pixels are

optically monitored in parallel might be more easily expanded

to larger sets of cells without compromising d’ values, provided

that suitable optics and detection systems exist to sample broad

fields of view.

Notwithstanding, a key strength of two-photon microscopy in

this discussion is its optical sectioning and rejection of back-

ground fluorescence, which in turn prevents the diminution of

the signaling dynamic range seen in one-photon microscopy.

Signal detection and spatiotemporal resolution are distinct

concepts in engineering and physics, but as in this example

superior resolution generally aids signal detection. Nevertheless,

it is well known that one can sometimes detect signals from

sources that are not resolved, and there are multiple longstand-

ing techniques in optical microscopy that do exactly that (Wilt

et al., 2009). The distinction between resolution and detection

will be familiar to those versed in biophysical imaging studies

of single fluorescent molecules and associated methods of

super-resolution microscopy (Wilt et al., 2009), which involve

the detection of single fluorescent emitters. In both neural

imaging and single-molecule studies, signals from structures

that cannot be separately resolved may be distinguishable using

statistical methods, even if they are sometimes concurrently

active—provided their activity is sometimes asynchronous. The

temporal asynchrony aids the disentanglement of signals that

are inseparable by spatial resolution alone; however, the more

neural sources that need to be computationally disentangled in

this way and the greater their synchronous activation, the more

challenging this task becomes. More broadly, attaining high-

quality Ca2+ traces requires suitable algorithms for extracting

individual cells’ dynamics from the raw Ca2+ imaging data. This

is especially so with one-photon fluorescence microscopy,

which does not provide optical sectioning, since Ca2+ signals

from out of focus neural elements will impact the image data.

To prevent these contaminants from causing substantial arti-

facts or cross talk in the traces representing the dynamics of

individual cells, it is generally important to use cell-sorting algo-

rithms capable of cross talk removal (see Computational Image

Analyses). Cross talk from neurons far outside the focal plane

is not a concern with two-photon imaging, but signal contami-

nants can still arise from neuropil or at the boundaries between

adjacent cells (Kerr et al., 2005; Mukamel et al., 2009). Given
the prominent role that optical detection of neural activity is likely

to play in neuroscience research for the foreseeable future, an

acquaintance with signal processing and signal detection theory

will become increasingly useful (Figure 1).

An important result to emerge from a signal detection theoretic

analysis of spike detection is that even though d’ varies linearly,

sub-linearly, or as a polynomial function of common optical

parameters, incidence rates of false-positive or false-negative

spike detection fall faster than exponentially with increases in

d’. This has practical consequences, because it implies that

modest improvements to indicators, cameras, and other optical

hardware can yield major strides toward successfully capturing

neural activity. Another key result from signal detection theory

is that in the regime of low fluorescence background, spike

detection can succeed well with even modest numbers of signal

photons. An activity indicator with ultra-low levels of baseline

emission can thus be highly effective, even if signal emission

in response to neural activity is weak. This result may seem

non-intuitive, since for many fluorescence reporters protein

engineers seek to optimize brightness. However, much of the

improved performance of GCaMP6 over its predecessors is

due to diminished baseline fluorescence, rather than increased

signal emission (Chen et al., 2013c). This theoretical result also

illustrates the value of the systems engineering approach for

indicator development and provides the mathematical basis for

why the NIH BRAIN Initiative report calls for indicators with

ultra-low background emissions (BRAIN Initiative, 2014).

Across a wide range of conditions, if the fluorescence emis-

sions comprise a stationary mean baseline flux, F0, plus a signal

transient that arises nearly instantaneously at spike incidence

and then decays exponentially with time constant t, the theoret-

ical expression for d’ under photon shot noise-limited conditions

is approximately (DF/F),O(F0t/2). The first factor implies that d’

increases linearly with the signaling dynamic range, whereas

the second factor implies that increases in brightness or exten-

sions of the decay time that do not affect DF/F lead only to

square root improvements in d’. This captures mathematically

the notion that indicators with prolonged signal transients

improve spike detection, since analyses can make use of the

signal photons that arrive over the transient’s entire duration

(Figure 1C). More broadly, this expression for d’ facilitates

comparative evaluations and describes how changes in instru-

mentation that impact F0, such as an increase in camera

sensitivity or a decrease in the numerical aperture of photon

collection, impact spike detection fidelity. One can also examine

rise-time kinetics, and signal detection theory shows that spike

detection fidelity generally declines with slowing of the optical

transient’s rise time.

In many experiments, researchers aim not only to detect spike

incidences but also to estimate the times of their occurrences.

As noted above, increasing the duration of the optical transient

in response to a neural spike increases d’, but it reduces the ac-

curacy of spike timing estimation. The Chapman-Robbins (C-R)

bound is a metric from signal estimation theory that provides a

theoretical minimum for the variance in the estimation of spikes’

occurrence times. Under photon shot noise-limited conditions,

the C-R bound can imply an optimal timing estimation accuracy

that is either smaller or greater than the time bin used to sample
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 143
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the photon flux. This implies that ‘‘super-resolution’’ in the esti-

mation of spike timing may be possible, such as by using prior

knowledge of the signal’s temporal waveform (Grewe et al.,

2010). The C-R bound generally depends most strongly on d’

and t (Wilt et al., 2013) (Figures 1D and 1E). Unlike signal detec-

tion theory, which provides concrete prescriptions for classifying

the occurrences of spikes, signal estimation theory does not

guarantee the existence of an estimator that attains the C-R

bound. Nonetheless, the C-R lower bound provides a best-

case value of estimation variance and useful guidance regarding

the optical parameters that influence spike timing accuracy in

real experimental situations.

Together, the engineering frameworks discussed here pro-

vide valuable insights toward optimizing optical experiments.

Notably, the formalism describes how modifications in instru-

mentation or data acquisition rates trade off with changes in

indicator properties. In this sense, the analyses help meet the

aims of the systems engineer, who seeks to consider all facets

of an imaging system or experiment holistically.

Neural Activity Indicators
To date, imaging studies of cellular level neural activity in live

mammals have nearly all relied on indicators of intracellular

Ca2+ concentration, [Ca2+]. (Notable exceptions include studies

of vesicle, glutamate, or monoamine release [Kato et al., 2012;

Marvin et al., 2013; Muller et al., 2014].) Initial Ca2+ imaging

studies used small molecule Ca2+-sensitive dyes, several of

which are bright, are photostable, and report neural Ca2+ tran-

sients in the live brain via fluorescence transients of �150 ms

durations and DF/F values up to �150%–200% in isolated

labeled cells (Helmchen et al., 1999; Svoboda et al., 1999). The

advent of methods for bulk loading Ca2+-sensitive dye into

many cells in the live brain opened the door to in vivo Ca2+ imag-

ing studies of neuronal and astrocytic ensembles (Nimmerjahn

et al., 2004; Stosiek et al., 2003). However, reliable targeting

of a Ca2+-sensitive dye to selected cells in the live mammalian

brain is usually achieved by visually guided intracellular loading,

such as by maneuvering a micropipette (Kitamura et al., 2008),

which impedes the study of large populations of cells of a

single genetic class. Emerging chemical genetic methods

may combine bulk loading of an indicator dye with genetic

specificity (Tian et al., 2012). An existing alternative is to use

one fluorescence color channel for detecting Ca2+ signals

across a broad population of indicator labeled cells and another

color channel for identifying a subset of cells that express a

fluorescent genetic marker (Kerlin et al., 2010; Nimmerjahn

et al., 2004; Runyan et al., 2010).

The arrival of genetically encodedCa2+ indicators with compa-

rable signaling performances as those of synthetic Ca2+-sensi-

tive dyes has enabled fairly routine targeting of genetically

defined cell populations in live mammals (Chen et al., 2013c;

Ohkura et al., 2012; Tian et al., 2009). One does need genetic

access to the cells of interest, but for many cell types suitable

genetic tools exist. Notably, genetically encoded Ca2+ indicators

can often be expressed stably over weeks, sometimes months;

thus, unlike Ca2+-sensitive dyes, genetically encoded indicators

allow long-term imaging studies of neural dynamics in behaving

animals through the use of chronic animal preparations (Ander-
144 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
mann et al., 2010; Chen et al., 2013c; Huber et al., 2012;

Keck et al., 2013; Masamizu et al., 2014; Peters et al., 2014;

Ziv et al., 2013). Time-lapse Ca2+ imaging studies have opened

up to empirical study many questions about the long-term

dynamics of ensemble neural codes—in hundreds of neurons

per animal—that were previously unanswerable. A key part of

the toolkit enabling these capabilities is the widely used GCaMP

family of genetically encoded Ca2+ indicators.

GCaMP comprises a circularly permuted green fluorescent

protein (GFP) into which a calmodulin Ca2+-sensing domain

with four Ca2+ ion-binding sites is inserted (Nakai et al., 2001).

Binding of one or more Ca2+ ions to the calmodulin moiety

modulates the protein’s conformation and the environment

surrounding the GFP fluorophore such that it increases its fluo-

rescence intensity. Several rounds of protein engineering have

markedly improved the GCaMP indicators’ signaling capabilities

(Chen et al., 2013c; Ohkura et al., 2012; Tian et al., 2009).

An advanced variant, GCaMP6, is today widely used for in vivo

cellular-level functional imaging, comes in distinct versions rep-

resenting different tradeoffs between detection sensitivity and

signaling kinetics, approaches single-spike detection sensitivity,

and allows a spike timing resolution of �10–250 ms depending

on the experimental details and data analyses (Chen et al.,

2013c). Ongoing work seeks to create Ca2+ indicators based

on fluorophores with emission colors other than green (Aker-

boom et al., 2013; Inoue et al., 2015; Wu et al., 2013; Zhao

et al., 2011). As recently demonstrated in live mice expressing

red and green Ca2+ indicators in neocortical somatostatin inter-

neurons and pyramidal cells, respectively, there are interesting

possibilities for probing information processing in two or more

distinct cell types simultaneously (Inoue et al., 2015). Red fluo-

rescent Ca2+ indicators also offer the prospect of imaging

more deeply into brain tissue, due to the reduction in light scat-

tering at longer optical wavelengths.

Notwithstanding the utility of Ca2+ imaging, it does not provide

an exact readout of membrane voltage dynamics. The time

course of the [Ca2+] rise in response to an action potential is gov-

erned by biophysical processes, including Ca2+ buffering and

voltage-dependent activation of Ca2+ channels, which are

distinct from those setting the action potential’s electrical wave-

form (Helmchen et al., 1996). The time-varying signals from a

Ca2+ indicator also depend strongly on its Ca2+ handling proper-

ties, notably the kinetic rates and equilibrium constant for Ca2+

binding and unbinding (Sun et al., 2013). Thus, in addition to

the inherent differences between membrane voltage and intra-

cellular [Ca2+] dynamics, fluorescence signals from a Ca2+ indi-

cator provide a temporally filtered version of the underlying

[Ca2+] dynamics. There are also nonlinear aspects of the tempo-

ral filtering, such as due to Ca2+ binding saturation or cooperativ-

ity in the binding of multiple Ca2+ ions to an indicator molecule

(Nakai et al., 2001; Tian et al., 2009).

For GCaMP6, simultaneous optical and electrical recordings

in vitro have revealed that CA1 hippocampal pyramidal cells

have an approximately linear relationship between the peak

amplitude of a somatic Ca2+ transient and the underlying number

of action potentials (Chen et al., 2013c). Other types of pyramidal

cells likely also exhibit approximately linear relationships be-

tween these variables, but not necessarily with the same linear
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function as for CA1 pyramidal cells. Inhibitory interneurons typi-

cally differ in their spiking patterns and Ca2+ signaling and buff-

ering attributes from excitatory neurons, which usually makes it

harder to assign spike numbers to interneurons’ Ca2+ transients.

Nevertheless, Ca2+ imaging can often reveal a general, time-

dependent modulation of interneuron activity. For example,

Ca2+ imaging studies of the response properties of visual cortical

interneurons have tracked visually evoked rises in somatic fluo-

rescence intensity, which approximated spike rate modulations,

rather than discrete incidences of Ca2+ transients (Kerlin et al.,

2010; Runyan et al., 2010). More broadly, interneurons or other

cell classes with fast-spiking patterns challenge the capabilities

of Ca2+ indicators, which cannot provide millisecond-scale

timing or accurately follow the individual action potentials in a

spike burst, due to the optical transients’ prolonged decay times

(�150ms ormore) andmoderate rise times (�10ms ormore). If a

Ca2+ indicator is sparsely expressed in isolated cells, one can

detect the activation of individual dendrites, dendritic spines,

or axons (Chen et al., 2013c; Glickfeld et al., 2013; Kaifosh

et al., 2013; Lovett-Barron et al., 2014; Xu et al., 2012), but it is

generally infeasible to monitor hyperpolarizations or other sub-

threshold aspects of somatic voltage dynamics in vivo by using

Ca2+ imaging.

Thus, the attraction of voltage indicators stems from the pos-

sibility of directly visualizing neural membrane voltage and

tracking fast and sub-threshold dynamics that Ca2+ signals fail

to convey. The challenge of developing high-performance

voltage indicators results from: the brief durations of spike

waveforms (as short as hundreds of microseconds in some

neuron types), necessitating indicators with comparably rapid

on-kinetics; the desire to follow individual spikes in a burst,

precluding the use of prolonged signal decays to boost detection

fidelity; the need to target the indicator to the cell membrane

with high selectivity to sense the membrane potential and avoid

non-specific background fluorescence; the more limited portion

of the cell (the membrane, a two-dimensional structure) from

which useful photonic signals arise, as compared to the cyto-

plasm in Ca2+ imaging; and the need for much higher d’ values

due to the far briefer time bins (�1 ms) typically used for imaging

voltage versus Ca2+ dynamics. The last point follows from signal

detection theory (Figure 1B). To illustrate, if the probability of

correctly categorizing one time bin as containing a spike or not

is 0.99, and the time bin is 100 ms, this implies that the mean

rate of false-positive spike detection is on the order of 0.1 Hz.

But if the time bin is 1 ms, the false-positive rate becomes

�10 Hz, which is unacceptable and can swamp the true spiking

patterns of many neurons.

Small-molecule voltage-sensitive fluorescent dyes have been

in use for several decades. The best of these are bright and have

fluorescence dynamic ranges of up to �20%–50% per 100 mV

voltage change when excited near the red-edge of their absorp-

tion spectrum (Kuhn et al., 2008). However, they tend to be lipo-

philic, labeling cell membranes indiscriminately, and highly

prone to photobleaching and phototoxic effects on cell health

(Peterka et al., 2011). With bulk loading approaches it is also

challenging to discriminate voltage signals arising from individual

cells from those emanating from neighboring cells or neuropil.

Targeted intracellular loading of dye into individual cells is
feasible (Anti�c and Zecevi�c, 1995), but this approach is ill-suited

for in vivo imaging of large ensembles of individual cells or for

long-term imaging studies.

Genetically encoded voltage indicators can be readily tar-

geted to chosen cell types and in principle should permit long-

term imaging studies of voltage dynamics. In the last few years,

protein voltage indicators have markedly improved in sensitivity,

brightness, dynamic range, and signaling kinetics. One class of

these indicators takes advantage of the conformational dy-

namics of a voltage-sensing domain (VSD) isolated from a

voltage-sensitive phosphatase of the sea squirt Ciona intestina-

lis. Fusing this VSD to two bright fluorescent proteins that serve

as fluorescence resonance energy transfer (FRET) pairs yielded

bright voltage sensors (Akemann et al., 2012, 2010; Dimitrov

et al., 2007; Tsutsui et al., 2008). These sensors exhibit �20–

100 ms response times to voltage depolarizations and have

recently allowed cell-type-specific imaging of population level

voltage dynamics in awake animals (Carandini et al., 2015). How-

ever, their signaling dynamic range is limited (�1% response to

action potentials in cultured cells) due to various combinations of

weak voltage sensitivity and slow kinetics. The ArcLight voltage

indicator is also based on theCiona intestinalis VSD, but fused to

a single fluorescent protein (Cao et al., 2013; Jin et al., 2012).

ArcLight attains �12 ms response times and <3% signal

changes in response to action potentials, but its decay kinetics

limit its ability to resolve spikes separated by less than

�50 ms. These attributes sufficed in live fruit flies to convey use-

ful aspects of voltage dynamics in specific neurons with rela-

tively slow voltage dynamics (Cao et al., 2013) but are generally

insufficient to report fast spike trains.

Another class of voltage indicators uses bacteriorhodopsin

family proteins as the voltage-sensitive element. During the

proton pumping photocycle of these proteins such as Archaer-

hodopsin (Arch), which is well known in neuroscience for

providing a means of optogenetic silencing (Chow et al.,

2010), there are changes in optical absorbance that accompany

proton translocation (Kralj et al., 2012; Lanyi, 2004). These pro-

teins are also very weakly fluorescent (quantum yield <10�3)

(Kralj et al., 2012). Thus, changes in the proton-motive force,

i.e., through changes in pH or trans-membrane voltage, modu-

late the absorbance and thus confer voltage sensitivity to the

fluorescence intensity (Kralj et al., 2012; Kralj et al., 2011). Initial

work identified a mutation that eliminated Arch’s proton current

but slowed the photocycle and sensor kinetics (Kralj et al.,

2012). Other mutations sped the voltage-dependent kinetics

and improved the dynamic range (�10%–50% DF/F for

spikes in cultured neurons) while maintaining negligible photo-

current (Flytzanis et al., 2014; Gong et al., 2013; Hochbaum

et al., 2014). The larger dynamic range and faster kinetics

enabled spike detection in cultured neurons at d’ levels

several-fold greater than those of the initial Arch sensor

(Gong et al., 2013; Hochbaum et al., 2014). However, in brain

slices Arch’s dim fluorescence necessitates intense illumination

(�12 W/mm2) that excites tissue auto-fluorescence and

heats the specimen (Hochbaum et al., 2014). Toward enabling

studies in behaving mammals, efforts to create brighter Arch

variants are underway (Flytzanis et al., 2014; Hochbaum et al.,

2014; McIsaac et al., 2014).
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Figure 2. Recent Advances in Genetically Encoded Fluorescent Voltage Indicators
(A) Upper: Design of the ASAP1 voltage sensor. A circularly permuted green fluorescent protein is inserted within an extracellular loop of the VSD from a chicken
voltage-sensitive phosphatase. Depolarization leads to decreased fluorescence. Lower: Simultaneously acquired optical (green) and electrophysiological (black)
recordings from a cultured hippocampal neuron expressing ASAP1 and undergoing a spontaneous burst of action potentials.
(B) Upper: Design of a FRET-opsin voltage sensor. An L. maculans (Mac) rhodopsin is fused to a bright fluorescent protein. Lower: Simultaneously acquired
optical (green) and electrophysiological recordings (black) from a cultured neuron expressing MacQ-mCitrine.
(C) For a set of measurements performed under standardized optical conditions, peak DF/F values are plotted against the total number of photons detected per
spike. Dashed lines are iso-contours of the spike detection fidelity index d’.
(D) Genetically encoded voltage indicators have notably improved over the past several years. Whereas d’ measures spike detection fidelity for temporally
isolated spikes, d’/t, where t is the indicator’s decay time-constant, captures the capabilities of sensors with faster off-times to detect spikes within fast spike
trains.
(A) is adapted from St-Pierre et al. (2014). (B) and (C) are adapted from Gong et al. (2014). (D) is courtesy of Y. Gong.
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Two new classes of genetically encoded voltage indicators

with notably improved capabilities advance the field closer to

tracking the membrane potentials of individual neurons optically

in live mammals. The ASAP1 indicator consists of a circularly

permuted green fluorescent protein inserted within an extracel-

lular loop of the VSD from a chicken voltage-sensitive phospha-

tase, yielding a sensor that declines in fluorescence intensity

with membrane depolarization (Figure 2A) (St-Pierre et al.,

2014). This represents a distinct voltage-sensing mechanism

from ArcLight, which has an intracellular fluorophore fused to

the C terminus of the VSD. In comparison, FRET-opsin indicators

combine the brightness of a genetically engineered fluorescent

protein, which acts as a FRET donor, with the voltage-sensitive

absorbance of a rhodopsin family protein, which acts as a

FRET acceptor (Gong et al., 2014; Zou et al., 2014). This

approach also yields declines in fluorescence with membrane

depolarization. The FRET-opsin sensors MacQ-mOrange2 and

MacQ-mCitrine employ the L. maculans (Mac) rhodopsin mole-

cule, which in comparison to Arch has greater voltage sensitivity

and a blue-shifted absorption spectrum that allows better spec-

tral overlap with the emissions of bright fluorescent proteins

(Figure 2B) (Gong et al., 2014).

ASAP1 and the Mac sensors have comparably fast kinetics,

with �2–3 ms time constants for the fast on-component of the

fluorescence response. They are also sufficiently bright to over-

come tissue auto-fluorescence and successfully report single

action potentials in live brain slices, at illumination intensities

�500–1,000 times lower than those used for Arch (Gong et al.,
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2014; Hochbaum et al., 2014; St-Pierre et al., 2014). For detec-

tion of neural spikes, the MacQ sensors outperform ArcLight

by�2-fold in d’ (Figures 2C and 2D). Reflecting the sharp decline

in spike detection error rates with rises in d’ (Figure 1B), this

�2-fold increase should substantially improve voltage-imaging

performance in challenging experiments. To illustrate, an

improvement from d’ = 2 to d’ = 4 should theoretically decrease

the spike detection error rate from �10�1 to �10�3 per time bin.

In live mice, the rates and optical waveforms of cerebellar

Purkinje neurons’ dendritic voltage transients as seen via

MacQ-mCitrine matched expectations based on electrophysio-

logical recordings. However, the choice of Purkinje neurons for

this demonstration was specifically motivated by these neurons’

large dendritic trees and the prolonged duration of their dendritic

spikes, factors that substantially eased the challenge of spike

detection (Gong et al., 2014).

Overall, voltage indicators are nearing the performance levels

needed to image single action potentials in the brains of

behaving mammals, at least under sparse labeling conditions.

To achieve this, calculations suggest that �2- to 4-fold further

increases in d’ values will be required, and even greater

increases for imaging densely labeled cells. Along with further

improvements to the indicators, advances in optical instrumen-

tation will be crucial to bring voltage imaging to full fruition in

behaving animals (see Outlook). The microscopes in common

use today for Ca2+ imaging in behaving animals are typically

incapable of the kilohertz imaging rates needed for the analo-

gous voltage-imaging studies. To acquire voltage-imaging data
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Figure 3. Head Fixation Allows Cellular Level Brain Imaging using Conventional Optics, while Constraining and Enhancing Experimental
Control over the Behavioral Repertoire
(A and B) Schematic (A) of a virtual reality experiment in which the mouse runs on a spherical treadmill while viewing amonitor that provides visual-flow feedback.
Example traces (B) of neural Ca2+ activity (black DF/F traces) from a layer 2/3 visual cortical neuron, during running with visual-flow feedback (feedback session),
and during running with visual stimulation that was unrelated to the mouse’s motion (playback sessions). Baseline periods, when the animal was sitting without
visual flow, are unshaded. Periods shaded in gray are those when the mouse was running and received visual-flow feedback. Orange denotes periods when the
animal was running but there was a feedback mismatch (no visual flow). Green denotes playback periods, when the animal was sitting while viewing visual flow.
Both panels are adapted from Keller et al. (2012).
(C) Photograph of a virtual reality setup. Adapted from Dombeck et al. (2010).
(D and E) Two-photon image (D) of GCaMP3-expressing layer 2/3 neurons in parietal cortex. Ca2+ activity traces (E) from the 3 cells circled in (D), recorded while
the animals performed a T-maze task. Both panels are adapted from Harvey et al. (2012).
(F and G) Comparisons of place cell activity (F) between virtual (red) and real (blue) linear tracks. Activation ratio (left) and firing rates (right) of cells active on the
track and at the goal location. Comparison (G) of place cell activity on a real (blue) and virtual (red) linear track regarding the spatial information content in the cells’
spiking patterns. Spatial information content across 432 cells active on a virtual linear track was significantly lower than in 240 cells active on a real-world linear
track. Both panels are adapted from Ravassard et al. (2013).
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sets with comparable numbers of individual cells there will need

to be noteworthy improvements in imaging speed, field of view,

and reduction of fluorescence background.

Optical Imaging Paradigms for Studies in Behaving
Animals
Two complementary paradigms have emerged for optical brain

imaging studies in behaving mammals: those involving head-

fixed animals (Figure 3) and those permitting unconstrained

behavior (Figure 4). Depending on the scientific question, limiting

an animal subject’s range of behavior can be a benefit or a draw-

back. Both approaches are likely to play important, ongoing

roles in the study of cellular and neural circuit dynamics during
active animal behavior. Genetically encoded Ca2+ indicators

and chronic animal preparations have allowed time-lapse Ca2+

imaging studies across weeks in both head-fixed and freely

behaving rodent preparations. This has permitted long-term

tracking of ensemble neural dynamics, such as for studies of

learning and memory (Huber et al., 2012; Keck et al., 2013; Ma-

samizu et al., 2014; Peters et al., 2014; Ziv et al., 2013).

The groundwork for these recent studies was set in part by the

substantial history of experiments that used voltage-sensitive

dyes or intrinsic optical effects to probe population-level neural

dynamics in awake head-restrained monkeys (Grinvald et al.,

1991; Raffi and Siegel, 2005; Seidemann et al., 2002; Tanigawa

et al., 2010), as well as freely moving (Ferezou et al., 2006) and
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Figure 4. Head-Mounted Microscopes Based on Miniaturized
Optical Components Allow Brain Imaging in Freely Behaving
Animals
(A) Photograph of the miniaturized integrated microscope (Ghosh et al., 2011).
(B) Photograph of a mouse running on a wheel as the integrated microscope
captures Ca2+-related fluorescence signals.
(C) Ca2+ activity traces from 10 cells acquired in the mouse basolateral
amygdala using the integrated microscope. Cell filters used to calculate the
traces were extracted from the Ca2+ imaging data using a cell-sorting method
based on principal and independent component analyses (Mukamel et al.,
2009).
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head-fixed rodents (Ferezou et al., 2007; Kuhn et al., 2008; Mo-

hajerani et al., 2013, 2010; Zhang et al., 2012). To date, nearly all

cellular level fluorescence imaging studies in behaving animals

have used Ca2+ indicators. The recent improvements in voltage

indicators (Figure 2) and demonstrations in head-restrainedmice

with new reporters of glutamate (Marvin et al., 2013) and mono-

amine (Muller et al., 2014) release indicate that the set of fluores-

cent sensors usable in behaving animals is now poised for

expansion.

The head-fixed format for optical brain imaging allows the

use of conventionally sized optical instrumentation, typically a

two-photon microscope residing on a vibration-isolation table

(Chen et al., 2013b; Dombeck et al., 2009; Dombeck et al.,

2010, 2007; Harvey et al., 2012; Kaifosh et al., 2013; Keck

et al., 2013; Keller et al., 2012; Lecoq et al., 2014; Lovett-Barron

et al., 2014; Masamizu et al., 2014; Miller et al., 2014; Nimmer-

jahn et al., 2009; Peters et al., 2014; Petreanu et al., 2012). This

differs from studies in freely moving animals, which require mini-

aturization of the entire or part of the microscope so that the

animal can carry it on the cranium during unrestrained behavior.

The conventional high-performance objective lenses that are

permissible in the head-restrained format, combined with the

optical sectioning afforded by two-photon imaging, allow activity

in dendrites, or even in fine structures such as axonal boutons

and dendritic spines, to be detected during active behavior

(Boyd et al., 2015; Kaifosh et al., 2013; Marvin et al., 2013;

Petreanu et al., 2012; Sheffield and Dombeck, 2015; Xu et al.,

2012). It is also relatively straightforward to perform two-color

fluorescence imaging, such as for distinguishing within a broad

population of indicator-labeled cells the activity of a dual-labeled

subset, defined genetically or by its connectivity (Chen et al.,

2013b; Inoue et al., 2015). With the help of microendoscopes

or microprisms that can be inserted into the live brain, a variety

of viewing angles and deep brain areas can be optically ac-

cessed that would be otherwise prohibitive (Andermann et al.,

2013; Barretto et al., 2009, 2011; Chia and Levene, 2009; Heys

et al., 2014; Jung et al., 2004; Jung and Schnitzer, 2003; Levene

et al., 2004; Low et al., 2014). Head fixation also eases certain

auxiliary manipulations, such as a mid-session intracranial

drug delivery or visually guided electrical recording (Lovett-

Barron et al., 2014; Nimmerjahn et al., 2009). Further, as new op-

tical hardware or imaging techniques emerge, head-restrained
(D) Map of 162 cell bodies identified in the mouse basolateral amygdala (BLA)
within Ca2+ imaging data acquired with the integrated microscope, overlaid
on an image of the mean fluorescence. CeL, centrolateral nucleus of the
amygdala; EPN, endopiriform nucleus.
(E) Map of 555 cell bodies identified in the mouse nucleus accumbens within
Ca2+ imaging data acquired with the integrated microscope, overlaid on an
image of the mean fluorescence.
(F) Map of 472 cell bodies identified in themouse hippocampal area CA1within
Ca2+ imaging data acquired with the integrated microscope, overlaid on an
image of the mean fluorescence.
(G) Fluorescence image of GCaMP6m expression in the lateral hypothalamus,
acquired with the integrated microscope. Arrows indicate a GABAergic neuron
expressing GCaMP6m and a blood vessel.
Scale bars are 100 mm in (D)–(G). (A) and (B) are courtesy of Kunal Ghosh and
Inscopix Inc.; (C) and (D) were provided by Benjamin F. Grewe; (E) was pro-
vided by Jones G. Parker and Biafra Ahanonu. (F) is courtesy of Lacey J. Kitch,
Margaret C. Larkin, and Elizabeth J.O. Hamel. (G) is courtesy of Garret Stuber
and is adapted from Jennings et al. (2015).
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animal behaviors facilitate the prompt application of these

approaches to in vivo brain imaging, without the prerequisite of

first creating a miniaturized version suitable for mounting on a

freely moving animal; this advantage is especially notable for

techniques involving complicated optical setups.

Initial Ca2+ imaging studies in awake head-restrained rodents

involved relatively simple behaviors such as quiet wakefulness

(Bathellier et al., 2012; Greenberg et al., 2008; Kato et al.,

2012; Kuhn et al., 2008; Mohajerani et al., 2010) and grooming

or locomotion (Dombeck et al., 2009,2007; Nimmerjahn et al.,

2009). Behavioral assays have since progressed, making use

of the head-fixed preparation’s suitability for controlled delivery

of sensory stimuli (Andermann et al., 2011; Blauvelt et al.,

2013; Carey et al., 2009; Miller et al., 2014; Patterson et al.,

2013; Verhagen et al., 2007). The addition of a trained behavioral

response enabled studies of perceptual discrimination tasks

(Andermann et al., 2010; Komiyama et al., 2010; O’Connor

et al., 2010). A version of associative fear conditioning even ex-

ists for brain imaging in head-restrained animals (Lovett-Barron

et al., 2014). For studies of motor behavior, the study of many

stereotyped behavioral trials can be vital, and the constraints

of head fixation can facilitate this stereotypy (Huber et al.,

2012; Masamizu et al., 2014; Peters et al., 2014).

Brain imaging in head-restrained animals also allows the use

of virtual reality approaches (Harvey et al., 2009; Hölscher

et al., 2005) (Figures 3A–3C), which enable sensory manipula-

tions that would be difficult or impossible to achieve in freely

behaving animals. For instance, one can create artificial mis-

matches between an animal’s motor behavior and the visual

feedback signals it receives in response (Figures 3A and 3B)

(Keller et al., 2012). Virtual reality approaches have also allowed

imaging of neural activity related to spatial navigation behaviors

(Figures 3D and 3E) (Dombeck et al., 2010; Harvey et al., 2012)

that have usually been studied in freely moving animals (Hafting

et al., 2005; O’Keefe and Dostrovsky, 1971; Ziv et al., 2013). Re-

searchers are still exploring the extent to which neural responses

during virtual-navigation tasks in restrained animals mimic those

occurring during normal unrestrained navigation (Aronov and

Tank, 2014; Ravassard et al., 2013). Even if visual aspects

of the virtual reality are highly convincing, there might be key

differences in head direction, self-motion, vestibular and olfac-

tory cues, which might in turn impact neural coding (Figures 3F

and 3G). Continued study of these issues and innovation of

new virtual reality methods (Aronov and Tank, 2014; Sofroniew

et al., 2014) will help expand and define the set of scientific

questions that can be fruitfully examined by brain imaging in

head-fixed animals.

Complementary to techniques that require head fixation, opti-

cal approaches that involve miniaturized head-mounted imaging

devices and flexible tethers (fiber optics or floppy electrical lines)

enable brain-imaging studies in freely moving mammals (Figures

4A and 4B). This capability is important, because some animal

behaviors are incompatible with or poorly adapted to head-

restrained conditions. Examples include the social behaviors

such as fighting, mating, care-giving, and other forms of inter-

action; behaviors probing stress or anxiety that might be

influenced by the stress of head restraint; motor behaviors

involving motion of the head and neck; olfactory behaviors
involving active exploration of an odor landscape; and vestib-

ular-dependent behaviors. Miniaturized optical devices for use

in freely moving animals are also generally compatible with the

wide set of behavioral assays and apparatus already deployed

and validated across neuroscience research and in the neuro-

pharmaceutical industry, including for studies of operant, navi-

gation, social, learning, sensory, and motor behaviors.

Initial innovation of head-mounted devices for imaging cellular

activity in behaving rodents focused on miniaturized laser-scan-

ning two-photon microscopes, all of which used fiber optics to

deliver ultrashort-pulsed laser illumination to the microscope

(Engelbrecht et al., 2008; Flusberg et al., 2005; Göbel et al.,

2004; Helmchen et al., 2001; Piyawattanametha et al., 2009;

Sawinski et al., 2009). The requirements of a miniaturized

laser-scanning system imposed some challenging engineering

design tradeoffs. The aim of reducing the size and mass of

the head-mounted components, including the scanning appa-

ratus, conflicted with the desire to scan a broad field of view at

adequate frame rates. Miniaturized two-photon microscopes

that were in principle sufficiently small (�0.6–3.9 g in mass) for

use in freely behaving mice never progressed in practice beyond

studies in anesthetized mice (Engelbrecht et al., 2008; Flusberg

et al., 2005; Göbel et al., 2004; Piyawattanametha et al., 2009).

The challenge of miniaturization is less severe for studies in

rats. One study successfully demonstrated two-photon Ca2+ im-

aging in visual cortical neurons of freely behaving rats using a

5.5 g microscope that contained a miniaturized scanning

mechanism, allowing a mean of 16 neurons to be monitored

per behaving animal (11 Hz frame rate) (Sawinski et al., 2009).

An alternative strategy of scanning the laser illumination before

it entered a fiber optic bundle compromised optical performance

and mechanical flexibility of the tether to the animal (Göbel et al.,

2004). To date, the combined engineering challenges of fiber-

optic delivery of ultrashort laser pulses and laser-scanning

in a miniaturized two-photon microscope remain sufficiently

complex that no studies using this approach in freely behaving

animals have been published in the last few years.

To circumvent these challenges while achieving broader

fields of view and faster frame rates, recent work on miniaturized

microscopes has focused on camera-based, one-photon epi-

fluorescence microscopes that are sufficiently lightweight

(�1.1–1.9 g) for use in freely behaving mice (Flusberg et al.,

2008; Ghosh et al., 2011). The success of the one-photon

approach for Ca2+ imaging in freely moving animals is in large

part due to the substantial signaling dynamic range of recent

Ca2+ indicators. Even in the absence of the optical sectioning

provided by two-photon imaging, this signaling dynamic range

is whatmakes excellent d’ values possible in the face of substan-

tial background photon flux and Ca2+ signals from neural ele-

ments outside the focal plane. Initially, the illumination and

fluorescence image propagated to and from the mouse via a fi-

ber-optic bundle (Flusberg et al., 2008; Murayama and Larkum,

2009; Murayama et al., 2007, 2009; Soden et al., 2013), but the

subsequent approach of integrating all optical components

within the head-mounted device has proven notably superior

regarding the optical sensitivity, field of view, resolution,

mechanical flexibility for the animal, and portability between

experimental sites that can be attained (Ghosh et al., 2011).
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Using a fingertip-sized integrated microscope (Figure 4A) that

combines a blue light-emitting diode (LED), a cell phone

CMOS camera chip for digital imaging, miniaturized lenses,

and a fluorescence filter set within a single compact housing,

one-photon imaging of neural Ca2+ signals in freely behaving

mice has become more widespread since the initial experiments

(Figures 4B–4F) (Berdyyeva et al., 2014; Ghosh et al., 2011;

Jennings et al., 2015; Ziv et al., 2013). The integratedmicroscope

has a �0.5 mm2 field of view (Ghosh et al., 2011), which permits

dense sampling of up to �1,000 individual neurons simulta-

neously (Alivisatos et al., 2013; Chen et al., 2013a; Ziv et al.,

2013), about 20–50 times more cells than can be individually

monitored in behavingmice using electrophysiological methods.

For comparison, tabletop two-photon microscopes have also

recorded Ca2+ transients from �1,000 cells at a time, but to

date only at slow frame acquisition rates of 0.1–0.5 Hz due to

speed limitations set by raster-scanning the laser excitation

(Stirman et al., 2014). In freely moving rats, multi-electrode

recordings can monitor up to �250 neurons concurrently

(Pfeiffer and Foster, 2013), much closer to the �1,000 cell tallies

feasible by imaging.

The first Ca2+ imaging studies with the integrated microscope

were acute experiments that compared the complex spiking

dynamics of up to �200 individual Purkinje neurons in the

cerebellar cortex across different motor behavioral states

(Ghosh et al., 2011). By combining the integrated microscope

with a microendoscope for imaging deep brain areas (Jung

et al., 2004; Jung and Schnitzer, 2003; Levene et al., 2004) and

a chronic preparation for time-lapse microendoscopy (Barretto

et al., 2011), a subsequent study examined the long-term

dynamics of themouse hippocampal ensemble neural represen-

tation of space (Ziv et al., 2013).

Currently ongoing studies with the integrated microscope

involve time-lapse imaging of ensemble neural Ca2+ dynamics

in other brain regions such as the striatum, nucleus accumbens,

hypothalamus, dentate gyrus, substantia nigra, amygdala,

neocortex, and the ventral tegmental area (e.g., Figures 4C–

4F). Unlike conventional two-photon microscopes, which can

resolve dendrites and other structures �500–700 mm below the

surface of the brain, using one-photon microscopy one can

detect and extract cellular signals �150–200 mm deep into

tissue, and further if the cell labeling is sparse. However, the

combination of the integrated microscope and various micro-

endoscopes (typically 1,000–500 mm in diameter; up to �8 mm

long) has proven surprisingly versatile in examining brain

areas never before imaged optically in live mammals (Jennings

et al., 2015). By adding a microprism to the tip of the microendo-

scope to form a periscope probe (Murayama and Larkum, 2009;

Murayama et al., 2007, 2009), or using a microprism in direct

combination with the microscope (Andermann et al., 2013;

Chia and Levene, 2009; Heys et al., 2014; Low et al., 2014), still

more brain areas and anatomical views will be accessible in

freely behaving mice.

In addition to enabling large-scale Ca2+ imaging during

active mouse behavior, the permanent optical alignment and

compatibility with existing behavioral apparatus have been key

attractions of the integrated microscope. The microscope can

be readily used in animal housing facilities and combined with
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existing behavioral chambers such as mazes or operant con-

ditioning boxes. Floppy electrical lines to the mouse’s head

exert scant mechanical influence on the animal and transmit

high-definition (HD) digital video directly to a data acquisition

system. These virtues make it feasible to study several mice in

parallel, each wearing an integrated microscope, facilitating

the acquisition of data sets with sufficient statistical power to

address sophisticated questions about ensemble neural coding.

Collectively, brain-imaging studies in head-restrained and

freely behaving animals are becoming widespread for address-

ing questions of many kinds. In our laboratory, we use both

approaches and allow the scientific question to guide the

decision of which imaging format is preferred. With continued

innovation, we expect both formats will attain additional capabil-

ities (see Outlook), such as concurrent imaging of multiple

brain areas and increases in the number of cells that can be

monitored (Lecoq et al., 2014; Stirman et al., 2014), expanded

capabilities for volumetric or multi-plane imaging (Bouchard

et al., 2015; Quirin et al., 2014; Sheffield and Dombeck, 2015),

and sophisticated combinations of imaging with optogenetic

manipulations (Hochbaum et al., 2014; Packer et al., 2015;

Prakash et al., 2012; Rickgauer et al., 2014).

Computational Image Analyses
Imaging data on the dynamics of large sets of individual neurons

typically undergo multiple stages of computational processing.

First, there are housekeeping operations, such as image regis-

tration to correct for displacements due to brainmotion. Second,

there is cell sorting, in which one extracts from the video data the

fluorescence signals from the individual neurons. Third, one may

opt to convert the continually varying fluorescence time traces

into digitized event rasters of neural activity, at least when it is

feasible to do so. Finally, there are the specific statistical ana-

lyses that probe the particular biological questions at issue in

the experiment. We consider here the first three stages, which

are of general interest since they apply to the majority of Ca2+

imaging studies presently underway in behaving mammals.

A first stage of analysis focusing on image registration is

greatly aided by having a high-quality animal preparation for

stable in vivo imaging.With sufficient care to surgical procedures

and mechanical damping of brain motion during imaging, a rigid

image registration usually suffices to align the different video

frames of a Ca2+ imaging data set to a precision adequate for

subsequent analyses (Thévenaz et al., 1998; Ziv et al., 2013).

Some authors have also registered the individual lines or pixels

within single image frames (Dombeck et al., 2007; Greenberg

and Kerr, 2009).

For a second stage of analysis focused on cell sorting, there

are several approaches in common usage. In all likelihood,

none of these algorithms will be adequate to fully address the

needs for cell sorting imposed by the large-scale Ca2+ imaging

data sets containing �103–105 individual neurons that are now

emerging (see Outlook) (Alivisatos et al., 2013; BRAIN Initiative,

2014; Freeman et al., 2014). One widespread and elementary

method for separating signals fromdifferent cells is to demarcate

the boundaries of individual cells and denote each enclosed

area as a region of interest (ROI), one for each cell (Dombeck

et al., 2007; Göbel et al., 2007; Kerr et al., 2005; Kuchibhotla
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et al., 2014; Lovett-Barron et al., 2014; Ozden et al., 2008; Peters

et al., 2014).

Although conceptually simple, this approach has multiple

drawbacks, largely because the boundaries of individual cells

are almost never commensurate with the boundaries between

image pixels or voxels. Even pixels that seem to be in the middle

of a cell body can contain contaminating Ca2+ signals from neu-

ropil activation, such as from synaptic contacts or out-of-focal-

plane structures. Especially with the dense indicator labeling

that is typical of large-scale Ca2+ imaging studies, many image

pixels may contain multiple sources of Ca2+ signals, including

neuropil, somata, dendrites, and axons (Kerr et al., 2005; Muka-

mel et al., 2009), thereby introducing cross talk. In addition to the

sheer density of neuropil, which makes such cross talk likely,

aspects of the imaging setup such as resolution, optical

sectioning, and susceptibility to light scattering deep in tissue

also strongly influence concerns about cross talk. Concerns

about cross talk are especially warranted for one-photon imag-

ing data, as cells’ boundaries usually appear blurred or distorted,

and Ca2+ signals from neural elements outside the focal plane

can contaminate the activity traces of cells encircled within

ROIs. Cognizant of these issues, some researchers draw very

conservative boundaries for cell bodies, by keeping the ROI

perimeter well inside the pixels that actually contain the cell

body membrane. Unfortunately, this workaround discards

many useful signal photons arising near the cell perimeter,

because the cytoplasmic volume of a bounded ROI scales

cubically with its radius. This in turn can compromise d’ values.

This workaround also cannot eliminate Ca2+ signal contaminants

from neuropil that may corrupt pixels near the soma center. For

this reason some researchers try to remove centrally located

contaminants from the ROI signals by subtracting a weighted,

time-varying trace representing the neuropil’s Ca2+ activity;

unfortunately, the choice of the weight is typically ad hoc. For

studies of fine neural structures such as dendrites, the work-

around is even hard to execute unless the fluorescence labeling

is very sparse. Needless to say, manual approaches to defining

ROIs are nearly prohibitive with the data sets of�1,000 individual

cells that are becoming increasingly common in mammals, but

versions with some computer-assisted image segmentation

remain feasible to perform (Ohki et al., 2005). Nevertheless,

computer-assisted drawing of ROIs as a means of cell sorting

typically relies upon heuristic definitions of cell morphology

rather than generally applicable statistical principles for decom-

posing a data set into its constituent signal sources.

In comparison to cell-sorting methods based on cell

morphology, another class of sorting approaches relies on the

spatiotemporal attributes of neurons’ activity patterns (Dombeck

et al., 2010; Maruyama et al., 2014; Miri et al., 2011; Mukamel

et al., 2009; Ozden et al., 2008). For instance, one such approach

involves a linear regression of image pixels’ fluorescence time

series against the animal’s sensory inputs or behavioral outputs

(Miri et al., 2011). This approach may work well in some circum-

stances but is not general purpose, since it is limited to cells

with significant linear correlations to the specific sensory or

behavioral parameters chosen for the regression and requires

an image segmentation step to isolate the individual cells from

an image of the pixels’ regression significance levels. It does
not explicitly address the issues of cross talk noted above, nor

does an approach that groups pixels with correlated fluores-

cence time traces (Ozden et al., 2008).

One cell-sorting method that is expressly formulated to

disentangle signals between different cellular elements involves

first a principle component analysis (PCA), for purposes of

dimensionality reduction, followed by an independent com-

ponent analysis (ICA) that seeks the set of independent Ca2+

signal sources (Brown et al., 2001; Hyvärinen and Oja, 2000;

Mukamel et al., 2009). Many neuroscientists are familiar with

the capabilities of ICA for blind source separation and cross

talk removal in the context of the ‘‘cocktail party problem’’ (Bell

and Sejnowski, 1995), which involves separating the speech

signals from different people in a crowded room of speakers.

The ICA approach to cell sorting makes no assumptions about

cells’ morphologies but does posit that cells’ signals are statisti-

cally sparse and mutually independent (Mukamel et al., 2009).

Notably, image analysis by ICA is well known inmultiple contexts

to be robust to modest levels of motion artifact and violations

of the assumption of independence (McKeown et al., 1998;

Mukamel et al., 2009; Reidl et al., 2007). For instance, when

applied to Ca2+ imaging movies of complex spiking activity

from cerebellar Purkinje neurons, the ICA approach correctly

identified individual cells unless their pair-wise correlation

coefficients rose above �80%; at higher levels of synchronous

activity, cell pairs were assigned a single independent compo-

nent that could be correctly split into two via an additional

image segmentation step (Mukamel et al., 2009). This degree

of robustness and explicit handling of cross talk has made the

ICA approach broadly applicable to Ca2+ imaging studies of

many different cell types (e.g., Figure 4), conducted with one-

and two-photon fluorescence imaging (Dombeck et al., 2010;

Ghosh et al., 2011; Mukamel et al., 2009; Ziv et al., 2013), and

the software is available in open-source and commercial forms.

ICA can also pick out dendritic Ca2+ signals from densely labeled

tissue in an automated way (Lecoq et al., 2014; Xu et al., 2012).

Approaches based on non-negative matrix factorization have

also shown promising initial capabilities for identifying dendritic

activity and merit further exploration (Maruyama et al., 2014).

Nevertheless, when cells are densely labeled with the Ca2+

indicator, all sorting methods that represent individual cells as

spatial filters face basic tradeoffs between signal fidelity and

cross talk reduction. This limitation pertains to both the ICA-

and ROI-based approaches. Thanks to recent improvements in

Ca2+ indicators (Chen et al., 2013c), in vivo Ca2+ imaging reveals

a greater portion of neural activity than ever before, so Ca2+ im-

aging data sets from densely labeled tissue are increasingly

testing the limits of what spatial filtering approaches to cell sort-

ing can achieve. Future work in this area will very likely need to

move beyond the use of spatial filters.

After extraction of individual cells and their fluorescence time

traces from the video data sets, in a third stage of analysis one

may further seek to identify the discrete incidences of each cell’s

activation and express these as a digitized train of events or

spikes. Not all Ca2+ imaging experiments require or allow this,

such as when examining fast-spiking interneuron dynamics

(Kerlin et al., 2010; Runyan et al., 2010). When discrete activation

events are apparent in the fluorescence traces, the Ca2+
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transients often have an approximately stereotyped waveform

within a given cell class, and different algorithms for spike detec-

tionmake use of this stereotypy in different ways. Ca2+ transients

often exhibit a fast rise followed by an exponential decay, and by

using a specific temporal filter that aims to capture this waveform

in how it stands out from noise fluctuations, deconvolution-

based methods identify when the temporally filtered version of

the fluorescence trace crosses a detection threshold (Holekamp

et al., 2008; Vogelstein et al., 2010; Yaksi and Friedrich, 2006).

Other spike detection approaches use template matching (Kerr

et al., 2005) or likelihood estimates of spike incidences based

on the fluorescence waveform (Wilt et al., 2013), including in an

iterative manner that aims to remove Ca2+ transients succes-

sively from the fluorescence trace until only noise remains

(Grewe et al., 2010; Wilt et al., 2013). In cell types that fire bursts

of action potentials, individual spikes sometimes cannot be

resolved within the temporally low-pass-filtered signals provided

by theCa2+ indicator. In these cases it may be desirable to detect

spike bursts as single events. The variability in the Ca2+ bursts

precludes assumptions of a stereotyped optical waveform, but

the application of a simple detection threshold can nevertheless

be highly effective (Ziv et al., 2013).

Spike detection algorithms based on supervised learning

methods typically require simultaneously acquired optical and

electrophysiological recordings of the very same cells, from

which one trains the algorithm to recognize neural activation

events (Greenberg et al., 2008; Sasaki et al., 2008). Of note,

evenwithin one cell type, Ca2+ transients observed in vitro during

paired recordings used for training may differ in their signal and

noise characteristics from what is seen in vivo. However, paired

optical and electrophysiological recordings of cellular activity

in live animals are often technically challenging; in cases when

they are feasible, the resulting data sets generally provide an

excellent check on the entire analysis pipeline for in vivo Ca2+

imaging (Greenberg et al., 2008; Grewe et al., 2010; Kerr et al.,

2005; Mukamel et al., 2009).

On the whole, it has been our experience that cell sorting is the

analysis step at which the greatest performance differences

arise between algorithms in common use. By comparison,

different algorithms for extracting spikes from fluorescence

traces do disagree in some of their decisions about individual

candidate spikes, but in many experiments the extent of these

disagreements is insufficient to alter the eventual biological con-

clusions. To this point, paired optical and electrical recordings

have revealed spike detection accuracies of �85%–95% for

several algorithms (Greenberg et al., 2008; Grewe et al., 2010;

Mukamel et al., 2009). Signal detection theory provides another

means of evaluating the multi-step computational procedure

that converts the raw Ca2+ imaging data into neural spike trains.

Due to the substantial non-stationary noise sources in studies of

live animals, one generally cannot attain the physical limit on

spike detection as set by optical shot noise. Nevertheless,

having this limit remains useful for gauging the efficacy of

computational approaches across different optical setups.

Outlook
The approaches discussed here for cellular imaging in behaving

mammals are all relatively young, and we expect exciting further
152 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
developments of multiple kinds. For starters, we foresee expan-

sion in the aspects of neural activity that can be visualized, using

improved voltage indicators and reporters of neurochemical

signaling (Marvin et al., 2013; Muller et al., 2014). Improved

voltage indicators will likely make imaging of single action

potentials possible in behaving mammals with millisecond-scale

accuracy of spike timing estimation. Voltage imaging of sub-

threshold membrane potential oscillations in genetically speci-

fied neurons should also be feasible, at least when aggregating

signals over multiple cells, and might fruitfully be combined

with Ca2+ imaging of individual cells’ spiking patterns, to observe

spiking and oscillatory rhythms concurrently.

We also expect an expansion in the range of mammalian

species in which cellular level imaging is feasible during active

animal behavior. Nearly all cellular imaging studies published

to date in behaving mammals have used rodents. Several

research groups are pursuing two-photon Ca2+ imaging as a

means of monitoring large ensembles of individual neurons in

awake, head-restrained monkeys. Challenges include attaining

suitable patterns of indicator expression, minimizing image

artifacts due to brain movements that are larger than those

in rodents, and achieving adequate optical penetration into brain

tissue to reach the neurons of interest. The combination of

miniature microscopes and microendoscopes might help in

addressing the latter two issues, by providing an optical conduit

that can interrogate cells far beneath the brain surface and that

moves to a certain extent with the surrounding brain tissue.

The primate cranium is sufficiently big to accept multiple minia-

ture microscopes, potentially allowing imaging of several brain

areas in parallel. As the marmoset primate model grows in

prominence (Cyranoski, 2014), we expect analogous imaging

approaches to arise for this species as well.

Another likely set of advancements in cellular level imaging

will involve further integration with other optical technologies.

Through the development of spectrally compatible sets of neural

activity indicators and optogenetic actuators (Hochbaum et al.,

2014; Prakash et al., 2012), it is now feasible to both image

and manipulate spiking dynamics during active animal behavior

(Packer et al., 2015; Rickgauer et al., 2014). Combining fluores-

cence imaging and optogenetic manipulation in a single field of

view requires ensuring that the optical wavelengths used for

the two techniques do not induce cross talk effects. Optical tech-

niques for shaping three-dimensional patterns of illumination

may be particularly useful for confining light delivery to chosen

subsets of cells (Anselmi et al., 2011; Bègue et al., 2013; Niko-

lenko et al., 2013; Packer et al., 2012, 2015; Quirin et al., 2014;

Reutsky-Gefen et al., 2013), which could help minimize any

cross talk and enable sophisticated experiments in which

optogenetic control is restricted to cells whose dynamics show

specific coding properties or relationships to animal behavior,

as determined by in vivo imaging.

Eventually, it may even be possible to perform these selective

manipulations in a closed-loop manner, e.g., influencing a sub-

set of cells with particular coding properties in a manner that

depends directly on the time-dependent dynamics of either the

animal’s behavior or another (potentially overlapping) subset of

cells. Both versions of such closed-loop experimentation would

likely benefit from fast computational methods for analyzing the
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neural imaging data, to identify cells with particular coding prop-

erties in the midst of an experimental session. Real-time extrac-

tion of Ca2+ signals from theROIs of up to 11 neurons in behaving

mice has already been demonstrated (Clancy et al., 2014),

although not yet combined with optogenetics. Real-time com-

putational capabilities for extracting the dynamics of greater

numbers of cells will surely appear in the upcoming future.

Cellular level in vivo imaging studies also stand to benefit

from combination with post mortem methods of whole brain or

brain sample tissue clearing, which enable high-resolution fluo-

rescence imaging of cells preserved in the tissue’s intact

three-dimensional form (Chung et al., 2013; Hama et al., 2011;

Helmchen et al., 2013; Susaki et al., 2014; Tomer et al., 2014;

Yang et al., 2014). By examining the same cells’ activity patterns

during active animal behavior and then post mortem their

patterns of protein expression and anatomical connectivity, neu-

roscientists will gain new understanding of how neural dynamics

relate to macromolecular content and neural circuit structure.

Through another set of advances we expect the scalability and

throughput of imaging approaches in behaving mammals to

improve. For instance, it may be possible to conduct cellular

level imaging studies of multiple freely moving mice in parallel,

with minimal human supervision. The integrated microscope

naturally lends itself to this kind of scalability, since it is based

on mass-fabricated optoelectronics. Although imaging in

multiple mice is already possible today at a modest scale, the

full realization of this paradigm might require wireless modes of

video transmission, so that animals could provide data for longer

periods without human supervision. Wireless electrophysiolog-

ical recordings from multiple animals in parallel are already

widely used in behavioral neuropharmacology studies, and a

wireless approach to cellular imaging might notably benefit pre-

clinical and therapeutic discovery efforts. To date, brain imaging

in freely movingmice has been combinedwith wireless telemetry

systems that transmit electroencephalography (EEG) and elec-

tromyography (EMG) signals (Berdyyeva et al., 2014). There

have also been efforts to improve the throughput of imaging

studies in head-restrained rats, by allowing rats to initiate brief

periods of voluntary head restraint underneath the objective

lens of a conventional two-photon microscope (Scott et al.,

2013). Along with hardware advances to increase throughput,

improved computational methods would be crucial to handle

the barrage of data that a truly high-throughput approach would

produce.

The process of sorting individual neurons and their dynamics

from Ca2+ imaging data has already become increasingly

nontrivial as data sets have grown in magnitude. For instance,

a day’s worth of Ca2+ imaging in freely behaving mice can easily

yield a few terabytes of raw data, which can consume another full

workday for image pre-processing and cell sorting. In addition to

increases in computational speed, algorithmic progress will

likely also be important for improved cell sorting. The recent

gains in Ca2+ indicator performance have, in certain respects,

made separation of the different neural sources of Ca2+ activity

more challenging, since at any instant in time there is a greater

likelihood that neighboring somata, dendrites, and neuropil will

appear as simultaneously active. With prior less sensitive Ca2+

indicators a greater portion of neural activity was invisible,
making it easier to identify the sparser visible patterns of activa-

tion. Of course, the superior d’ values provided by the newer

indicators partially counteract this effect. Nevertheless, we

expect increasing needs for cell-sorting algorithms that can

detect various facets of cellular and sub-cellular activity in

densely labeled tissue, and in a computational time that scales

reasonably with the amount of data (Freeman et al., 2014). As

noted in the NIH BRAIN report, neuroscientists and statisticians

will likely need to work together toward proper analysis and

interpretation of the emerging large data sets from optical

studies (BRAIN Initiative, 2014). The involvement of computer

scientists will likely also be critical for algorithm design and

implementation, as well as database design and management.

In addition to the areas of potential progress noted above,

which generally concern issues ancillary to the optics of image

formation, another set of likely advances will involve strides in

the optical imaging process itself. Future forms of microscopy

will likely provide superior capabilities for imaging the dynamics

of large sets of individual neurons in behaving animals over

extended three-dimensional (3D) volumes, at further depths in

tissue from the objective lens, at faster acquisition rates, and

across multiple brain areas and greater numbers of cells. For

these pursuits the systems engineering approach will be

critical for guiding and coordinating all aspects of innovation

in a holistic way.

For instance, the challenge of attaining fast imaging of neural

activity over extended 3D volumes involves considerations of

more than just fast cameras or fast 3D-scanning methods. The

fundamental limitations to detection of neural activity are set

by photon statistics, and a substantial increase in the number

of voxels that must be sampled per unit time poses a serious

test of how to achieve adequate photon counts and d’ values

while maintaining the overall time resolution. As an illustration,

a laser-scanning microscope that achieves satisfactory photon

counts when serially scanning an image plane of 512 3 512

pixels in a time, T, will suffer a precipitous, �23-fold decline in

d’ values if one uses the same serial scanning parameters to

sample a volume of 512 3 512 3 512 voxels in time T under

otherwise equal optical conditions.

Similar considerations apply when considering the design of

new microscopy modalities for high-speed voltage imaging,

monitoring greater numbers of neurons, or observing multiple

brain areas in parallel using a single laser source. Regardless

of whether one seeks to maintain the same field of view but

increase the image acquisition rate, scan a broader field of

view and hence more neurons using a large objective lens, or

divide the illumination into two or more beams that each scan

a distinct brain area (Lecoq et al., 2014), the fundamental con-

siderations regarding detection of neural activity concern how

to attain satisfactory d’ values. In addition to framing the com-

mon nature of the problem due to limited photon counts, signal

detection theory suggests possible solutions. As noted above,

spike detection can succeed well with limited numbers of

signal photons provided that the background fluorescence is

extremely low. Thus, it is possible that a major advance in fast

volumetric imaging might come via further progress in indicator

development. There are also other possible routes to high-speed

imaging in behaving animals that merit equal consideration.
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Vasculature (fluorescence)A Figure 5. Three-Photon Fluorescence Imaging Penetrates Deeply
into Brain Tissue
(A) A reconstructed 3D volume of fluorescently labeled microvasculature
imaged in a live mouse using three-photon fluorescence microscopy. The
volume extends ventrally from the neocortical surface down into CA1 hippo-
campus. Scale bar, 50 mm. Adapted from Horton et al. (2013).
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For example, acousto-optic methods of fast 3D laser-scan-

ning allow random-access scanning patterns, in which only a

subset of voxels of interest is sampled, and can sharply increase

the sampling duration per voxel as compared to a raster-scan of

the total volume of interest (Duemani Reddy et al., 2008; Grewe

et al., 2010; Katona et al., 2012). Although acousto-optic scan-

ners have some intricate optical drawbacks, one simple draw-

back when studying behaving mammals is that random-access

scanning approaches neither are robust to brain motion nor pro-

duce data sets conducive to image alignment. Other possible

avenues to fast volumetric imaging involve sampling of multiple

voxels in parallel. Candidate imaging modalities include light

sheet microscopy, which samples entire planes in the specimen

with each camera frame acquisition (Ahrens et al., 2013; Hole-

kamp et al., 2008); light fieldmicroscopy, which samplesmultiple

specimen planes concurrently (Broxton et al., 2013; Levoy et al.,

2009; Prevedel et al., 2014); and scanless approaches to two-

photon imaging that sample in parallel a selected subset of

voxels (Quirin et al., 2014; Watson et al., 2010). To work well in

optically scattering brain tissue of behaving mammals, all of

these candidates would likely require accompanying innovations

in data analysis.

More generally, light scattering imposes key limitations on the

optical penetration depth into the mammalian brain that can be

achieved with any microscopy modality, and for the optical

wavelengths in common usage the effects of scattering domi-

nate those of light absorption (Lecoq and Schnitzer, 2011). It

was these depth limitations due to scattering that prompted

the development ofmicroendoscopy as ameans of imaging cells

in deep brain areas (Jung et al., 2004; Jung and Schnitzer, 2003;

Levene et al., 2004). Recent work has demonstrated the gains in

imaging depth that are achievable by using longer wavelength

infrared illumination, which undergoes markedly reduced scat-

tering in tissue (Kobat et al., 2011). Notably, in vivo three-photon

fluorescence microscopy using an excitation wavelength of

1.7 mm can provide images from the dorsal surface of the mouse

neocortex down to area CA1 of hippocampus, about �1.1 mm

deep in tissue (Horton et al., 2013) (Figure 5). Much work would

be necessary to make this approach viable as a generally appli-

cable platform for imaging neural activity in behaving mice. A

combination of red-shifted activity indicators, optical elements

optimized for 1.7-mm-wavelength illumination, new light sources

emitting ultrashort pulses at this wavelength, and methods of

adaptive optics (Ji et al., 2010; Rueckel et al., 2006; Wang

et al., 2014) for correcting the optical wavefront aberrations

that arise deep in tissue would likely all be required.

To achieve these multiple elements in a form that worked well

collectively, multi-disciplinary collaboration will almost certainly

be necessary. More generally, this example is but one illustration

that the challenges of imaging cellular level activity in behaving

mammals are sufficiently great that future progress will benefit
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hugely from close cooperation between neuroscientists, protein

designers, optical engineers, statisticians, and computer scien-

tists, while adhering to the systems engineering approach. Indi-

cators, optical instrumentation, and computational algorithms

are constantly evolving, but the physics of light and the need

to detect adequate numbers of photons will always set the phys-

ical bounds on optical imaging capabilities. Hence, the systems

engineering perspective will invariably provide valuable insights.
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