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One approach to super-resolution fluorescence microscopy, termed stochastic localization microscopy,

relies on the nanometer scale spatial localization of individual fluorescent emitters that stochastically label

specific features of the specimen. The precision of emitter localization is an important determinant of the

resulting image resolution but is insufficient to specify how well the derived images capture the structure

of the specimen. We address this deficiency by considering the inference of specimen structure based on

the estimated emitter locations. By using estimation theory, we develop a measure of spatial resolution

that jointly depends on the density of the emitter labels, the precision of emitter localization, and prior

information regarding the spatial frequency content of the labeled object. The Nyquist criterion does not

set the scaling of this measure with emitter number. Given prior information and a fixed emitter labeling

density, our resolution measure asymptotes to a finite value as the precision of emitter localization

improves. By considering the present experimental capabilities, this asymptotic behavior implies that

further resolution improvements require increases in labeling density above typical current values. Our

treatment also yields algorithms to enhance reliable image features. Overall, our formalism facilitates the

rigorous statistical interpretation of the data produced by stochastic localization imaging techniques.
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Optical diffraction limits the resolution of conventional
fluorescence microscopy, but several super-resolution tech-
niques that circumvent the diffraction limit have recently
emerged [1]. Among these, stochastic localization micros-
copy uses photoswitchable or spontaneous fluorophore
transitions between fluorescent and dark states [2–7]. In
each imaging cycle, emission from a sparse, random subset
of fluorophores enables emitter localization with a preci-
sion well beyond the diffraction limit [8,9].

The quantitative relationship between localization pre-
cision, labeling density, and image resolution remains un-
clear. Some groups suppose that the localization statistics
of single emitters [9] or emitter pairs [10] set the resolution
of stochastic localization microscopy. These are incom-
plete resolution measures, since they neglect that fine de-
tails of the specimen cannot be determined if the labeling is
too sparse [2]. Other groups heuristically invoke the
Nyquist-Shannon sampling theorem [11] to incorporate
labeling density [12]. Here, we argue that this heuristic
does not properly describe the role of labeling.

Definitions of resolution exist in both wave optics [13]
and estimation theory [10,14]. Here, we consider a feature
of the specimen to be resolvable when a microscopist can
reliably estimate it from the data. Thus, prior information
regarding statistical properties of the object or of the
imaging system improves resolution. Single molecule
imaging at the nanometer scale depends critically on the
prior information that photon emitters are point sources
[15]. With extended biological structures, the available

prior information about the sample structure typically pro-
vides weak constraints. It is unclear to what extent such
prior information can suppress spurious labeling details
and enhance true object features.
Here, we use estimation theory to find the optimal linear

filter for reconstructing a stochastically labeled object
using emitter localization data. By comparing the perform-
ance of this estimator to the limit that the Cramer-Rao
lower bound sets for the variance of any biased estimator,
we demonstrate optimality across a broader class of esti-
mators, including those that are nonlinear. Our estimator
yields a resolution measure that incorporates the precision
of emitter localization, labeling density, and prior
information.
We describe the structure of the sample as a spatially

varying probability density of fluorescent labels, sðxÞ.
Fluorophores are located at fxigMi¼1, where the number of
emitters is modeled as a Poisson random variable with
mean �M. For example, if fxig are locations of stochastically
bound fluorescent antibodies then sðxÞ is the distribution of
antigens, normalized to unity. In stochastic localization
microscopy each photon is assigned to a particular emitter,
leading to an estimated emitter density function, dEðxÞ ¼P

M
i¼1 �ðx� x̂iÞ. The estimated emitter locations, fx̂ig, are

distributed about the true locations in a way that depends
on the number of detected photons, the pixel size, the
background noise, the density of active emitters, and
the choice of estimator [4]. In conventional microscopy,
the point spread function (PSF), denoted h, describes the
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distribution of detected locations of photons emitted by a
point source. In stochastic localization microscopy, we use
an effective PSF, heff , to describe the distribution of esti-
mated point source locations for a fixed emitter. Assuming
that emitters are equally bright and do not photobleach, the
number of photons each fluorophore emits is Poisson dis-
tributed with mean �Q. Photobleaching does not strongly
affect our results (see the Supplementary Material [16]).

When limited by photon counts, heff � h
�Q. Because of the

central limit theorem, we model heff with a Gaussian.
Averaging the estimated emitter density function over
emitter numbers and locations yields the expected density,
�dE ¼ �Mðheff � sÞ, where * denotes convolution. In com-
parison, conventional microscopy does not assign photons
to emitters, so the recorded data are a photon density with
mean �dC ¼ �M �Qðh � sÞ. Here and elsewhere, the super-
script C stands for conventional. Thus, stochastic localiza-
tion microscopy provides images that are sharper than
conventional images by approximately the square root of
the number of detected photons per emitter.

A frequency-dependent signal to noise ratio (SNR),

fðkÞ � j �DEðkÞj2
Var½DEðkÞ� ¼

�MjHeffðkÞj2jSðkÞj2; (1)

aids intuition for stochastic localization microscopy (see
the Supplementary Material [16]). Capital letters denote
Fourier transforms of the corresponding functions, and
jSj2 is the spectral density of the specimen’s spatial struc-
ture. The SNR increases linearly with the number
of emitters. With sufficiently many emitters, �M �
ðjHeffj2jSj2Þ�1, the data approach their average values,
and one can estimate the underlying structure through
deconvolution, S � DE=ð �MHeffÞ. Thus, a linear estimator
suffices in the high SNR limit.

Since the effective PSF and the spectral density decline
to zero at high spatial frequencies, the SNR also decreases.
To analyze stochastic localization microscopy data in this
regime, we construct the optimal linear estimator, ŝ � ĝ �
dE, where ŝ is the estimated specimen structure and ĝ is
the filter kernel. Minimizing the average squared error over
the ensemble of structures provides the optimal filter in the
Fourier domain,

ĜhjSj2iðkÞ ¼
1

�MeffðkÞHeffðkÞð1þ hfðkÞi�1Þ (2)

(see the Supplementary Material [16]). Here h�i denotes the
ensemble average, �MeffðkÞ � h �MjSðkÞj2i=hjSðkÞj2i, and
the subscript hjSj2i emphasizes the dependence on the
ensemble averaged spectral density. For our theoretical
treatment (but not the simulations), we hereon assume
for simplicity that the same mean number of emitters label
each object in the ensemble, �MeffðkÞ ¼ �M. In the limit of
sparse labeling, the kernel approaches hjSj2iH�

eff , attenuat-

ing the data. In the opposite limit it approaches
the deconvolution filter, 1=ð �MHeffÞ. The average SNR

mediates the transition between these limits, thereby iden-
tifying and enhancing reliable image features.
The expected squared error characterizes the

performance of this estimator. The bias and variance of
the estimator are b ¼ �S=ð1þ hfiÞ and Var ¼
ð �MjHeffj2ð1þ hfi�1Þ2Þ�1 (see the Supplementary Material
[16]). The squared error, �2 ¼ Varþ jbj2, thus satisfies

�2½SðkÞ�
jSðkÞj2 ¼

1þ hfðkÞi hjSðkÞj2ijSðkÞj2
ð1þ hfðkÞiÞ2 (3)

(Fig. 1). In the sparse labeling limit, the squared error is
entirely bias; in the dense labeling limit, the squared error is
all variance. The Fisher information for our model satisfies
ðJ�1Þk;k ¼ 1=ð �MjHeffðkÞj2Þ [14] (see the Supplementary

Material [16]), so the Cramer-Rao lower bound implies
that the variance of any estimator with our bias function is
at least ð �MjHeffj2ð1þ hfi�1Þ2Þ�1 (see the Supplementary
Material [16]). Our estimator achieves this bound.
We use the Cramer-Rao lower bound to compute the

minimal squared error of any linearly biased estimator. We
find that our estimator captures the optimal linear bias
function by minimizing the average squared error with
respect to the bias function (see the Supplementary
Material [16]). In particular, the optimal linear estimator
outperforms all unbiased estimators (Fig. 1), and any supe-
rior estimator must be nonlinear and have a nonlinear bias
function.
This theoretical performance yields a resolution metric

that quantifies the microscopist’s ability to estimate the
specimen. Above the cutoff frequency,

FIG. 1 (color). The optimal linear estimator outperforms any
unbiased estimator. (A) We consider how the error associated
with the optimal linear estimator compares to the theoretically
optimal unbiased estimator (�2unbiased ¼ 1=ð �MjHeffðkÞj2Þ) as a

function of the ratio between the expected and true spectral
densities (plotted logarithmically on the x axis) and the mean
SNR (y axis). When this ratio is near unity, the optimal linear
estimator is superior. At high SNR, the role of the bias decreases,
but unbiased estimation is only superior for spatial frequencies
present in the specimen but not in the expected spectral density.
(B) The expected estimation error as a function of the ratio
between the expected and true spectral densities (x axis) and the
mean SNR (y axis).
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kM � min

�
kj �M � �

jHeffðkÞj2hjSðkÞj2i
�
; (4)

estimators must suppress signals to avoid noise amplifica-
tion. The resolution, kM, is the lowest frequency having
SNR below a chosen value of �. At this frequency, a
fraction 1=ð�þ 1Þ of the deconvolved signal is attenuated.
This measure incorporates labeling and prior information
and cannot exceed frequencies at which the effective PSF
or ensemble spectral density vanish.

To illustrate this point, consider a Gaussian effective
PSF, HeffðkÞ ¼ expð��2k2=ð2 �QÞÞ, and a Gaussian en-
semble spectral density, hjSðkÞj2i ¼ expð��2k2Þ. This
spectral density approximates an ensemble of uniform
disks (e.g., neurite cross sections) whose radius is propor-
tional to �. Then,

kM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Q

�2 þ �2 �Q
log

�M

�

s
(5)

(see the Supplementary Material [16]). For comparison,
the optimal filter kernel for conventional microscopy is

Ĝ C
hjSj2i ¼

1

�Q �MH

�
1þ 1þ �QjHj2

�Q �M jHj2hjSj2i

� ; (6)

such that

�M ¼ �e�
2ðkCMÞ2ð1þ e�

2ðkCMÞ2= �QÞ (7)

implicitly defines the cutoff frequency, kCM, for the effective
PSF and spectral density given above (see the
Supplementary Material [16]). Over a broad range of label-
ing, the cutoff frequency for conventional microscopy
varies only modestly, justifying the neglect of labeling
density in setting the resolution of conventional micros-
copy [Fig. 2(a)]. Over the same range, the cutoff frequency
for stochastic localization microscopy varies widely, with
noticeable resolution changes associated with small
changes in labeling [Fig. 2(b)].

We also compare the performance of the optimal linear
estimator to other common methods. With some excep-
tions [17], researchers typically present stochastic local-
ization microscopy data as scattergrams of estimated
fluorophore locations [3] or, to emphasize uncertainty,
Gaussian profiles at these positions [2]. Direct construction
of the optimal filter requires prior knowledge of the en-
semble spectral density. We handled the case in which prior
knowledge is unavailable by using two iterative methods to
approximate the spectral density,

Sð0Þd ¼ 1

M
DE; GðiÞ

d ¼ ĜjSðiÞ
d
j2 ; Sðiþ1Þ

d ¼GðiÞ
d DE (8)

Sð0ÞH ¼ 1

M
DE; GðiÞ

H ¼ ĜjHeffS
ðiÞ
H j2 ; Sðiþ1Þ

H ¼GðiÞ
H DE (9)

(see the Supplementary Material [16]). In the limit of
infinite SNR, and given the true spectral density, Eq. (8)

yields a stable estimate. We prefer Eq. (9) in low
SNR situations because it suppresses high-frequency
noise. These algorithms may not converge, and we com-
pared the estimates obtained at each of the the first 20
iterations.
As an illustration, we considered the problem of recon-

structing neuronal axons. Using a set of 256 images of
axonal cross sections obtained by confocal microscopy
[18], which we assumed would provide a reasonably rep-
resentative set of axons’ shapes, we explored if stochastic
localization microscopy would permit reconstruction of
axonal shapes at the nanometer scale. We randomly chose
128 images to compute the optimal estimator [Eq. (2)] and
used the rest for testing. Figure 3 shows the average
performance of several methods over 1000 sessions. The
ensemble optimal estimator performed best at all labeling
densities, indicating that a library of high resolution struc-
tures is likely to facilitate reconstruction via stochastic
localization microscopy. Strikingly, with dense labeling
both iterative methods that estimate the spectral density
outperformed methods that ignore the spectral density, but
with sparse labeling these methods performed poorly. A
single iteration of one of these algorithms is usually suffi-
cient to obtain its lowest error.
In summary, we have defined an estimation theoretic

measure of resolution for stochastic localization micros-
copy that incorporates localization precision, labeling den-
sity, and specimen statistics. One can potentially use a
library of electron microscopy images to obtain the prior
information needed to attain this resolution limit. This idea
is appealing in neuroscience, in which efforts to recon-
struct neural circuitry are striving for immense data sets
[19]. When such data are unavailable, researchers may use
Eqs. (8) or (9) to approximate the filter.

FIG. 2 (color). Labeling density more strongly affects the
resolution limit in stochastic localization microscopy than con-
ventional microscopy. We assume that �2 ¼ �2=100 to approxi-
mate an object of radius 15 nm and set � ¼ 3. Resolution
depends both on the average number of emitters that label the
object (x axis) and on the average number of photons collected
per emitter (y axis). (A) Over the range of relevant labeling
densities, the effective resolution in conventional imaging
only changes modestly. (B) In stochastic localization micros-
copy, the achievable resolution varies substantially over the same
range of labeling densities. Note the different color scales
in (A) and (B).
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Our estimator is optimal within a broad class, but
strongly biased nonlinear methods may surpass our reso-
lution limit. Our estimator and limit depend only on the
first two moments of the estimated emitter density func-
tion. Since the noise is not Gaussian, higher moments may
contain additional information that researchers can use to
design more sophisticated estimators.

Our resolution measure generally attains a finite value,
even with infinite photon counts (see the Supplementary
Material [16]). A few hundred photons per emitter can be
sufficient [Fig. 2(b)]. This localization precision is experi-
mentally achievable [20]. Improving the resolution by
increasing the labeling density of antibody-conjugated
fluorophores [3,5] is nontrivial because of their substantial
size relative to the features one wants to resolve.
Fluorescent proteins and synthetic dye molecules are gen-
erally smaller [21], so use of these may facilitate denser
labeling.

Although denser labeling improves resolution, the
Nyquist criterion suggests an overly optimistic scaling,

k
Nyq
M 	

ffiffiffiffiffi
�M

p
. In our treatment, the resolution generally

scales as
ffiffiffiffiffiffiffiffiffiffiffiffi
log �M

p
(see the Supplementary Material [16]).

This dependence reflects a balance between the linear
increase of SNR with labeling density and the Gaussian
decrease with frequency. Fundamentally, the Nyquist sam-
pling theorem does not set the scaling because observing a
single emitter’s position is not equivalent to sampling an
image intensity.
In comparison to traditional notions of resolution, the

achievable resolution depends on the specimen. A speci-
men with spectral density concentrated at low frequencies
will constrain the resolution limit because it lacks signal
(SNR) at high frequencies. This does not preclude satis-
factory image reconstruction, because high frequencies are
irrelevant in this context. Given a fixed ensemble of speci-
mens, our theory clarifies the labeling density and local-
ization precision needed to estimate a specimen’s spatial
frequency components.
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