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Reliable sensory discrimination must arise from high-fidelity neural representations
and communication between brain areas. However, how neocortical sensory
processing overcomes the substantial variability of neuronal sensory responses

remains undetermined'®. Here we imaged neuronal activity in eight neocortical areas
concurrently and over five days in mice performing a visual discrimination task,
yielding longitudinal recordings of more than 21,000 neurons. Analyses revealed a
sequence of events across the neocortex starting from a resting state, to early stages of
perception, and through the formation of a task response. At rest, the neocortex had
one pattern of functional connections, identified through sets of areas that shared
activity cofluctuations. Within about 200 ms after the onset of the sensory stimulus,
such connections rearranged, with different areas sharing cofluctuations and
task-related information. During this short-lived state (approximately 300 ms
duration), bothinter-area sensory data transmission and the redundancy of sensory
encoding peaked, reflecting a transient increase in correlated fluctuations among
task-related neurons. By around 0.5 s after stimulus onset, the visual representation
reached amore stable form, the structure of which was robust to the prominent,
day-to-day variationsin the responses of individual cells. About 1 sinto stimulus
presentation, aglobal fluctuation mode conveyed the upcoming response of the
mouse to every area examined and was orthogonal to modes carrying sensory data.
Overall, the neocortex supports sensory performance through brief elevations in
sensory coding redundancy near the start of perception, neural population codes that
arerobust to cellular variability, and widespread inter-area fluctuation modes that
transmit sensory data and task responses in non-interfering channels.

Given afixed sensory scene or object, sensory recognitionis normally
reliable. However, sensory cortical neurons have stochastic responses
that vary over timescales from seconds to days'*°. These variations
are oftenshared between cellsand across cortical areas' , raising basic
questions about how neural populations encode and transfer informa-
tionreliably despite activity fluctuations over multiple spatiotemporal
scales®™.,

Many studies have argued that neurons' shared fluctuations con-
strain the signalling capacity of cortical coding®*™, while perhaps
also facilitating the decoding of transmitted messages®>'*. However,
the relationships between shared fluctuations, the redundancy of
large-scale neural coding and the reliability of sensory cortical repre-
sentations remain poorly understood. Neural populations can show
greater long-term coding stability compared with single cells, but the
mechanism for stability and its relationship with shared fluctuations
merit further examination'°,

Human neuroimaging studies usually interpret cofluctuations
across brain areas as denoting functional connections for information

transmission®”'. Neuronal recordings have shown that inter-area fluc-
tuations can reflect arousal, neuromodulatory levels or spontaneous
movements*? and might also communicate functionalinformation’.
However, whether the cortex uses inter-area fluctuations to encode
task-related sensory data has not been tested empirically.

Touncover neural coding and inter-area dynamics promotingreliable
sensory processing, we recorded neuronal activity across the entire
visual cortex in mice performingavisual task. We analysed thousands
of cells, how their visual representations attain coding redundancy
and long-term stability, and whether brain areas share information
through cofluctuations.

Imaging neuronal activity across the cortex

To study visual processing, we trained head-fixed mice to perform a
Go/No-Go task (Fig. 1a, b and Methods). On each trial, mice viewed a
moving grating stimulus (duration, 2 s) oriented either horizontally or
vertically (termed Go and No-Go stimuli, respectively). Half a second
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Fig.1|Cellular-levelimaging across multiple cortical areas during a visual
discrimination task. a, Imaging of Ca® activity in thousands of layer 2/3
pyramidal neurons using acustom macroscope. b, On each trial, mice viewed
amovinggrating (2 sduration). After a 0.5 sdelay, an auditory tone initiated a
response period of 3 s, during which mice could respond by licking aspout.
Responses to a horizontal grating (the ‘Go’ stimulus) elicited a water reward.
Ifthe mouseresponded toavertical grating, it received anair puffandan8s
timeoutbefore the next trial. Mice performed 83 + 3% of the trials correctly

after the offset of a Go stimulus, the mouse could receive areward by
licking a spout. Incorrect licking after a No-Go stimulus elicited an
aversive air puff. To minimize motor-related neural activity during
stimulus presentation, we trained the mice to withhold licking until
theresponse period (Fig.1b). Near the end of training and before brain
imaging began, we reduced the grating contrast so mice just surpassed
80% success on both trial types.

Asthe mice performed the task, we used a fluorescence macroscope
(16 mm?field of view) to image somatic Ca** dynamics in neocortical
layer 2/3 pyramidal neurons (Fig. 1c, d and Supplementary Video1). To
avoid conflating locomotor-evoked and visual neural signals, we ana-
lysed only trials in whichlocomotion remained <1 cm s™. Eachrecording
spanned nearly all of the primary and higher-order visual cortical areas,
plus parts of somatosensory, auditory, posterior parietal, motor and
retrosplenial cortex. By identifying cells within concatenated datasets,
we tracked 21,570 neurons (3,597 £1,082 (mean + s.d.) in 6 mice that
performed 2,000 + 415trials over 5-7 days; Figs. 1d and 2a and Extended
Data Figs.1and 2a-d), thereby attaining long-term and concurrent
access to neuronal dynamics in multiple cortical areas.

Variability of cellular-level coding

Across eight cortical areas, many cells preferentially responded to one
of the two stimuli, with variable time-dependencies across cells and
areas (Extended Data Figs. 2e-h and 3a, b). To characterize cellular
coding, we examined correctly performedtrials and determined the sta-
tistical fidelity, d’, with which one could distinguish the two trial types
on the basis of the dynamics of each cell during the stimulus, delay or
response intervals. Notably, (¢’)*relates to the Fisher information con-
veyed about trial type™® ™. In merged datasets across all days, most cells
exhibited tuning to trial type in at least one of the trial periods (16,682
cells with significant tuning; 10,329, 9,204 and 11,958 in the stimulus,
delay and response periods, respectively; P < 0.01; permutation test;
710-1,340 trials per mouse; Fig. 2b, cand Extended Data Fig. 2h). The
fractions of cells tuned to trial type were similar across visual areas,
but thedistributions of d’ varied, especially owing to outlier cells with
high d’ values (Fig. 2c, d).

Many cells had d’ values and coding properties that changed
within individual sessions, even while their Ca®* traces retained high
signal-to-noiseratios and stable eventrates (Extended Data Fig. 1i-k).
Some cells increased their d’ values while others decreased theirs
(Extended DataFig. 2g, j). These bidirectional changes were balanced
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cortical areaboundaries. Inset: magnification of the areaenclosed within the
red box.Scalebars,1 mm (mainimage), 0.1 mm (inset).

inmagnitude, could not result from photobleaching and were unlikely
to reflect movement-induced effects because movement generally
increases pyramidal cell activity™*2*,

To assess coding stability, we tested whether cells concentrated
their coding responses into subportions of the ~1 h imaging sessions
by computing d’ separately for the two halves of each session. We also
analysed shuffled datasets with random permutations of the trial order.
If coding cells concentrate their responses into specific epochs, cod-
ing should vary more across half sessions in real than trial-shuffled
data, whichindeed was the case (Extended Data Fig. 2e), indicative of
intrasession coding fluctuations.

Many cells also had variable coding fidelity across days (Extended
Data Fig. 2f, h, i). However, as in previous research?, only a minority
flipped their coding preference (1.7 + 0.9% of coding cells) and these
cells had very low &’ values (0.13 + 0.05, mean + s.d.; n = 587 cells that
flipped preference in 6 mice). Notably, fluctuations were correlated
across timescales; cells with variable intraday coding were about
fourfold more likely to have variable across-day coding (Extended
DataFig. 2l). The anatomic comingling of cells with greater and lesser
stability (Extended Data Fig. 2i) and correlations between short- and
long-term fluctuations make it hard to argue that coding variability
arose fromimperceptible changes inimage quality or focal plane drift.

Time-invariant decoding strategies

Given the non-stationarities in cellular coding, we examined whether
anareareceiving such variable signals would need to continually adjust
itsreadout strategy to optimally extract stimulus information. Ongo-
ing plasticity might enable such adjustments or, alternatively, neural
ensembles might achieve reliability through redundant signalling
across multiple cells, information encoded in the correlation struc-
ture of neural population activity or combinations thereof>%*151925,
To examine these issues, we trained optimal linear decoders for
eachbrainareato distinguish between the two types of correctly per-
formed trials on the basis of neural ensemble activity in 100 ms time
bins (Methods). These ‘instantaneous decoders’ accurately determined
thetrial typeand, as previously? had astable form over the latter 1.5 s of
the 2 sstimulus presentation (Fig. 3a, band Extended DataFig. 3¢, f-h).
Given this constancy, for the interval 0.5-2 s after stimulus onset, we
trained ‘consensus decoders’, the performance of which matched
or surpassed that of the instantaneous decoders in most time bins
(Extended Data Fig. 3g). Notably, the form of the consensus decoder was
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stable over days (Fig. 3c (inset)), especially for visual areas (Extended
DataFig. 3i (insets)).

Thisacross-day stability led us to train one decoder for each area, plus
aseparate one for all of the areas grouped together, which we termed
‘commondecoders’and optimized for the 0.5-2 sinterval after stimulus
onsetusingall correct trials from all sessions. Notably, common decod-
ers outperformed decoders optimized for single sessions; instead of
yielding a suboptimal compromise between the best decoders for
different days, common decoders benefited from training on multi-
ple days’ data (Fig. 3c and Extended Data Fig. 3i). However, the exist-
ence of successful common decoders stemmed not just from greater
training data, for when we trained them on equally sized datasets as
single-day decoders the two decoder types performed equivalently
(Extended Data Fig. 31). Although, in principle, common decoders
could use stimulus- or choice-related neural activity to discriminate
between trial types, in practice, common decoders that were trained
on stimulus-period data used only stimulus information (Extended
Data Fig. 3j), implying that their stability reflected that of stimulus
representations.

Toidentify a basis for stability, we compared common and single-day
decoders using trial-shuffled datasets, in which each cell’s responses
were randomly permuted across trials of the same type from the
same day (Fig. 3d). Trial shuffling leaves the statistical properties of
individual cells unchanged but eradicates correlated fluctuations
between cells. In contrast to the results obtained from real data, when
we used trial-shuffled data the common decoders performed equiv-
alently or worse than decoders optimized for single days (Fig. 3d).
Furthermore, with real datasets, accounting for noise correlations
was important for extracting information optimally, as decoders that
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mean +s.d.oversixmice.d, For each area, we computed the distribution of
cellular d’values for trial-type encoding on correct trials. The plots show d”
values for each percentile of the distributions, averaged over six mice.

ignored noise correlations did much less well, especially for common
decoders (Fig. 3e). Overall, accounting for correlated fluctuations in
the real datawas especially important for constructing decoders that
were invariant across days (Extended Data Fig. 3i).

We next examined why accounting for noise correlations was so ben-
eficial to stable decoding performance. Strikingly, in real but not shuf-
fled datasets, day-to-day changesin stimulus-evoked neural responses
aligned to the principal eigenvectors of the noise covariance matrix
describingtrial-to-trial response fluctuations (Fig. 3f and Extended Data
Fig.4a). Mathematical modelling showed that this similarity between
fluctuations on distinct timescales allows common decoders to be
naturally resistant to both forms of variability, instead of compromis-
ing between structures optimized for single days, and that this ‘dual
robustness’ emerges even for simple feedforward networks in which
activity fluctuations on different timescales propagate through the
same pathways (Supplementary Information).

Toexamine how themouse’s upcoming responses might have affected
stimulus encoding, we trained ‘stimulus-only’ and ‘response-only’ con-
sensus decodersthat distinguished either the stimulus or the mouse’s
upcomingresponse, with the other factor held fixed. For example, using
trials on which mice withheld licking (No-lick trials), we trained decod-
erstoidentify the stimulus type. Cells that made the largest contribu-
tions to stimulus- and response-only decoders were interspersed across
the cortex (Fig. 3g-j and Extended Data Fig. 4). Stimulus-only decod-
ers attained high accuracy independently of the mouse’s upcoming
response (P < 0.7; signed-rank test; n = 6 mice; Extended Data Figs. 3k
and 4), suggesting that the sensory cortex separably encodes stimulus-
and choice-related signals. Consistent with this, trial-type decoders
for the stimulus period captured stimulus-related information, not
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response-related information. Furthermore, trial-to-trial variations
in stimulus encoding were uncorrelated with the mouse’s responses
(Extended Data Figs. 3j and 6d), suggesting that incorrect responses
were not directly related to the quality of visual coding and instead
stemmed from other factors.

Notably, response-only decoders attained significant accuracy dur-
ing stimulus presentation on Go but not No-Go trials (Extended Data
Figs.3kand 4). Thus, the cortex exhibits signals related to the mouse’s
decision or lick preparation on Go trials that are absent on No-Go tri-
als. This may reflect differences in how the brain couplesaGo cuetoa
correctresponse versus afailure to suppress licking afteraNo-Go cue.
Previous studies have reported similar asymmetries®*?.

Modulation of visual coding redundancy

Since classic studies of motion perception®*, neuroscientists have
appreciated that neural ensembles with correlated fluctuations encode
information redundantly, enabling subsets of cells to convey most of
the same information as the full ensemble®>>2*% However, previous
research has not directly measured how the redundancy of large-scale
neural coding relates to shared fluctuations, especially across brain
areas.

We examined three inter-related facets of redundancy: resilience
to a hypothetical loss of one cell; the number of cells, N, 5, needed to
convey 50% of the stimulus-identity information conveyed by all cells;
and the levels of correlated fluctuations between cell pairs (Fig. 3k-o
and Extended Data Fig. 5). Unexpectedly, correlated fluctuations and
visual coding redundancy were time-varying throughout stimulus
presentation. Both rose within 100 ms and crested around 200 ms
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after stimulus onset, at which time N, s had its minimum value, stimu-
lus coding was most redundant and correlated fluctuations peaked
(Fig.3k-n). These conditions persisted for only ~300 ms; subsequently,
correlated fluctuations and redundancy declined and neurons acted
more independently. Onaverage across mice, just after stimulus onset
Nyswasabout 350 cells, but near stimulation offset N, s was about 800
cells (Fig. 3I). Withinindividual mice, the full range of redundancy (N, s)
variations was a factor of 3.5 + 0.5 (mean + s.e.m.; n = 6 mice).

These changes arose from modulationsintask-related neurons. Spe-
cifically, correlated fluctuations in similarly tuned stimulus-coding cells
rosetoapeakaround200 ms after stimulus onset (Fig. 3m). These corre-
lationdynamics had greater amplitudes and distinctkinetics from those
of single-cell variability, arose within pairs of cellsin the same or different
areasand could not be simply explained as due to changes in the activity
rates of stimulus-coding cells (Extended Data Fig. 5d—j). Although some
cells were modulated by the mouse’s upcoming response (11 + 3% of
stimulus-coding cells; mean + s.e.m.; n = 6 mice; P < 0.01, permutation
test), response-related modulations had slower kinetics than corre-
lated fluctuations and, at the neural-ensemble level, were orthogonal to
stimulusrepresentations and did not affect stimulus-coding redundancy
(N,s) (Extended DataFig. 6¢c, d). Throughout stimulus presentation, N, s
varied inversely with correlated noise levelsin similarly tuned cell pairs,
with the same proportionality inallmice (r=0.9; P< 1.4 x 10 %; Fig. 30).
Thus, the 3.5-fold variations in coding redundancy seen in individual
micereflected approximately comparable variations in correlated noise
among task-related neurons. Since correlated fluctuations probably
arise from the shared inputs of cells*?, the invariant proportionality
constant probably reflects invariant aspects of mouse cortical con-
nectivity. Overall, in contrast to studies that assessed widespread noise



Fig.3|Accounting for correlated fluctuations among task-related cells
facilitates stable representations of stimulus type.a, Mean accuracies for
inferring stimulusidentity using optimal instantaneous (100 ms time bins)
linear decoders of activity for individual (coloured traces) or all brain areas
(black trace). Dashedlinesina,l, mdemarcate stimulus, delay and response
intervals. Dataare mean +s.e.m.across six mice b, Mean similarities between all
pairsofinstantaneous decoders, assessed by correlation coefficients between
pairs of decoder weights for all cellsin each mouse (n = 6 mice). Given the
decoder constancy across stimulus presentation, in c-jwe trained ‘consensus’
decoders, optimized for 0.5-2.0 s after the stimulus onset (Extended Data
Fig.3f, h).c,d, Toassess decoder stability, we trained ‘common’ consensus
decodersondatafromall days and compared them to consensus decoders
trained on data from single days. We evaluated real (c) and trial-shuffled (d)
datasetsinwhich each cell’s Ca* traces were randomly permuted across trials
ofthesame stimulus type fromthe same day. Each blue shadein c-edenotes
datafromone mouse during stimulus presentation. Each data pointincanddis
from one session and shows the stimulus-identity information (d’)* conveyed
by common and single-day decoders givenidentical test datasets from
individual days. Onreal datasets, common decoders outperformed single-day
decoders (c). On trial-shuffled datasets, single-day decoders generally
outperformed commondecoders (d). Dataare mean +s.d. across 100 random
divisions of each dataset into thirds, for dimensionality reduction, decoder
training and testing. Insets: correlation coefficient, r, values between
consensus decoders fromindividual days and the common decoder (C),
averaged over six mice (Extended Data Fig. 3i). e, Left, optimal linear decoders
outperformed diagonal decoders thatignore correlated fluctuations (68 + 6%
(meants.e.m.;P<1.7x107%) and 40 + 5% (P< 2.3 x 10~°) more information was
captured by the optimal decoders of trial type for common and single-day
decodersofactivity during stimulus presentation; signed-rank test; n =30
sessionsin 6 mice). Right, the superiority of optimal over diagonal decoders
was greater for common than single-day decoders. Increasesin (d’)* for optimal
versus diagonal decoders were 55 +26% (mean +s.e.m.) greater for

common than single-day decoders (P< 4.9 x 107, signed-rank test; n =30
sessions). Each connected pair of blue-shaded points shows results from one
session and one mouse; red points show mean values for individual mice.f,
Day-to-day driftsin neuralresponses were aligned with within-day, trial-to-trial
fluctuations. To assess day-to-day drift, we computed the unity-normalized
vector between the mean neural ensemble responses to each stimulus on
consecutive days, (i, — p)/(Ilr, — pyll). To characterize trial-to-trial

fluctuations, we computed the noise covariance matrix of ensemble responses,
averaged over both stimuli, for the first day of all consecutive pairs of days. We
projected (1, - p,)/(Ir, - ylI) onto this matrix’s eigenvectors, {e;}, and
averaged over both stimuli and all pairs of consecutive days. Day-to-day drifts
aligned with within-day, principal noise eigenvectors in real (purple points;
r=0.95; P<10°) but not trial-shuffled (red points; r= 0.02; P= 0.82) data.
Inset: cumulative plots of the fraction of the power of day-to-day variations
within the subspace defined by the first n noise eigenvectors (where nis the
abscissavalue) forreal (purple) and trial-shuffled (red) data. g-j, Cells
contributing most to the performance of stimulus-only decoders were
interspersed across the cortex. Maps of these most-informative cells (with
decoder weights that deviated >2 s.d. from the mean) are shown for one mouse
(stimulusinterval (g), delay interval (h) and response interval (i)) averaged over
bothresponsetypes.Scalebar,1 mm.j, Mean +s.e.m. (six mice) percentages of
the most-informative cellsin each brain area (coloursasina). For response
decoderresults, see Extended Data Fig. 4h-m.k, Coding redundancy peaked
justafterstimulus onset. For each time bin after stimulus onset (colours), we
used instantaneous decoders to measure the information (d’)> conveyed about
stimulusidentity by subsets of cellsrandomly chosen across all areas. Dataare
fromonemouse and are averages over 100 subsets of each size, normalized to
theresultfor all cells. For results for all mice and delay and response periods,
see Extended DataFig. 5b, c.s.e.m. values (not shown) are <8% for all points.1,
Mean ensemble sizes, N, 5, at which (d’)?reached its half-maximum, estimated
foreachtimebin usinginstantaneous decoders of activity across allimaged
areas.Dataare mean = s.e.m. across six mice.m, The absolute values of mean
noise correlations in Ca*" event rates for pairs of the most-informative cells
both tuned to Go stimuli (blue trace), both tuned to No-Go stimuli (red trace) or
oppositely tuned (magentatrace). Black trace, results for untuned cells. Data
aremean +s.e.m.across six mice. n, Cell pairs with similar stimulus tuning had
their greatest noise correlation coefficients just after stimulus onset. Data
show distributions of these coefficients at different times (denoted in colours)
pooled over six mice. Error bars (s.d.) are too smallto be visible. 0, N, s versus
theratio of the mean ofthe noise covariance matrix’s diagonal elements (X;) to
the mean of its non-diagonal elements (X;) for the most-informative neurons.
Each datapointisfromone mouse and time bin during stimulus presentation.
The coloursdenote individual mice and reveal alinear relationship (r=0.9;
P<1.4 x107%), consistent with mice having statistically similar neural
connectivity matrices. Dataare mean + s.e.m. over 100 subsamplings of cells
(y-axis) or 51-296 cells (x-axis).

correlations with alower time-resolution, during passive viewing>'%,

or without cellular resolution®, here noise correlations in task-related
neuronsincreased during early phases of perceptiontomore thantriple
the redundancy of sensory encoding.

We next examined how much of the information, (d)?, provided
by our decoders was redundant across brain areas. Decoder outputs
proved to be highly correlated between sensory areas; if on one trial
stimulus encodingin one areawas weaker or stronger than average, this
was usually soin other areas (Fig. 4a-c and Extended Data Fig. 6). This
interdependence and the resulting coding redundancy across areas had
asimilar time-dependence to the noise correlations among task-related
cells. Within ~200 ms of stimulus onset, decoder score correlations
peaked, yielding approximately a threefold redundancy across the
brain areas examined (Fig. 4d). This was not just from replication of
information within the primary visual cortex (V1), because the full set
of cells conveyed almost twice the information of those in V1 (Extended
Data Fig. 4b), suggesting that higher-order areas receive additional
information from outside V1. After attaining their peak values, coding
redundancy and decoder score correlations declined for the remainder
of visual stimulation. Near stimulus offset, visual representations in
different areas were almost mutually independent, consistent with the
vanishing correlated noise levels between cell pairs (Figs. 3m and 4d).
Overall, time-varying cofluctuations among task-related cells greatly
impacted visual processing, leading to severalfold increases in coding
resilience (Extended Data Fig. 5i), redundancy and inter-area correla-
tions that peaked soon after stimulus onset.

Communication throughinter-areafluctuations

Activity cofluctuations of cell ensembles are thought to reflect shared
connectivity, suchas common inputs, or direct interconnections'®*%>,
In the absence of sensory stimuli, such fluctuations can reflect an ani-
mal’s spontaneous behaviour™. During sensory tasks, previous studies
examined shared fluctuations across pairs of electrodes® > and decoder
score correlations across a pair of brain areas®, but the anatomic distri-
butions and time-dependencies of neuronal cofluctuations across multi-
pleareas and how they relate to task performance remain unexplored™.

To identify cofluctuating cell ensembles across pairs of areas, we
applied canonical correlation analysis (CCA) to mean-subtracted neural
activity traces, whichrepresent trial-by-trial activity fluctuations. CCA
identifies dimensions of shared activity and paired sets of dynami-
cal or communication modes'® (CCA modes) ranked by their levels of
co-varying activity (Extended Data Figs. 7-9 and Methods). During
visual stimulation, the number of CCA modes with significant cofluc-
tuations varied across different pairs of areas but was generally <20in
our datasets (Extended DataFig. 7). Inter-area, CCA fluctuationmodes
comprised about 60% of the total power of all cortical fluctuations,
implying a majority of fluctuation power during visual stimulation
propagates across cortical regions (Fig. 4e, f).

Given the time dependence of the correlated fluctuations of
task-related cells, we compared the CCA modes arising during visual
stimulation to those present just beforehand. Notably, by around
200 ms after stimulus onset, CCAmodes presentininter-trial intervals
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Fig.4 |Inter-areafluctuations and stimulus encoding redundancy peaked
around 200 ms after stimulus onset. a, Different sensory areas had strongly
correlated decoder scores. Shownis an example scatter plot for one mouse for
whichwe trained stimulus-type decoders using either V1or Slactivity from
0.5-0.6 safter stimulus onset on correctly performed trials. Each data point
shows the two decoder scores onone trial. Extended Data Fig. 6ashows another
example fromareas PPCandRSC.b, ¢, Correlation coefficients, r, for decoder
scores peaked 200 ms after stimulus onset. b, Time-varying mean + s.e.m.
(n=6mice) rvaluesbetween Vlandsevenotherregions. c, Peak rvalues for all
areapairs, averaged over mice (Extended DataFig. 6b, d). Dashed linesinband
ddemarcate the stimulus, delay and response periods. d, Redundancy of
stimulus encoding across the cortex peaked ~200 ms after stimulus onset and
thendeclined towards unity. Dataare mean + s.e.m. over six mice. e, Bottom,
raster plots of Ca*" eventsinindividual cells (from eight areas in one mouse)
withlarge contributions tointer-area cofluctuation modes found by CCA. Top,
coloured traces show the dynamics of the largest CCAmodes between Vland
sevenotherareas. The Vltraceisanaverage of results from all seven analyses.

(ITls) had decayed and a new set of modes had activated (Fig. 4g and
Extended DataFig.8). Thus, inter-area fluctuations in animals nominally
atrest™¥ appear to be distinct from those during an active sensory task.

To characterize the spatial structure of inter-area fluctuations, for
each choice of brain area as a source, we quantified the similarity of
its CCA modes with each of the seven other imaged areas. Strikingly,
for every source area, the primary communication mode was nearly
the same, irrespective of the target, implying that there was a global
mode of cofluctuations (Fig. 5a, b). Secondary modes were more local-
ized and shared across subsets of areas. For example, V1 shared one
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Cyanand grey shading mark Go and No-Go stimulus presentations,
respectively.Scalebars, 5s.d. (vertical), 10 s (horizontal).f, Inter-area
cofluctuations comprised about 60% of the total power of cortical noise
modes. The plot shows the mean powers, ¢* (the variance), of the ten largest
CCAmodes (red curve, left y-axis), averaged over all 28 area pairs and both areas
per pair, and the mean power of the 10 largest noise modes (blue curve) found
by principal component analysis (PCA) of fluctuationsin each area, averaged
over all 8 areas. Noise modes found by randomly shuffling weights from CCA
(black curve) had substantially less power. Ratios of noise power in CCA and
PCA modes (magenta curve, right y-axis) were consistently around 60%. For f
and g, dataaremean + s.e.m. over 6 mice. g, Distinctinter-area cofluctuations
arose duringvisual stimulation and ITls, defined as 2 sintervals preceding
stimulus onsets. We separately applied CCA to ITIs and stimulus presentation
periods. The time-varying correlation coefficients for the largest noise modes
betweenVlandsevenotherareasare plotted (coloured asinb). At the stimulus
onset, correlated activity rose considerably in modes found during visual
stimulation, whereasactivity inthe ITImodes declined (Extended DataFig. 8).

secondary mode with the auditory cortex and the somatosensory
cortex, and another with the lateral visual and medial visual cortical
areas and the posterior parietal cortex (Fig. 5a-c). Thus, CCA revealed
a hierarchical structure in which each area shared a global fluctua-
tion mode with all other areas, and distinct secondary modes with
different sets of areas.

We examined whether cofluctuation modes carried signals relating
to the visual discrimination task (Fig. 5d, e). About 0.5 s after stimulus
onset, activity in the second and higher CCA modes accurately encoded
stimulus identity. Up to ~80% of the total information encoded in the
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Fig.5|Orthogonalinter-areacofluctuations communicate sensory data
and the mouse’s upcoming response. a, Each matrix shows correlation
coefficients, r,for CCAmodes between one of eight source areas (listed at
bottom) and two target regions (arranged asin the insets). A large matrix
elementvalueindicates that the source cofluctuated with the two targets
using asimilar activity mode; small values imply distinct cofluctuation modes.
Results are shown for the five largest CCA modes for each source-target pair,
averaged over sixmice. The largest CCA mode (top row) was largely invariant to
source-target choices and thus globally shared across areas (the mean rvalues
ofthelargest modes for individual mice were 0.99, 0.95, 0.85,0.91,0.92 and
0.68). Insets: magnified views for the largest CCA modes involving V1and one
of seven otherareas (top), and the second-largest modes between Vland these
otherareas (bottom). In five out of six mice, there were at least two clusters
(orange and olive fonts) of secondary modes with moderate similarity
(schematicinc). Modesinvolving Vland LV, MV or PPC comprised one cluster;
modesinvolving Vland eitherarea A or S comprised another. b, Left, map of
neurons (green) contributing significantly (weights deviating by >2s.d. from
mean values) to the global fluctuation mode in one mouse. Right, map of
neuronsin the two clusters of second-largest CCAmodesinvolving V1 (seea
and c). Cellsmarked red contributed to cofluctuations between Vland either S
or A. Cells marked cyan contributed to cofluctuations between Vland LV, MV
or PPC.c, Left, clustering revealed two subsets of target areas with similar
second-largest CCAmodesinV1,asseeninaandb. Right, ten example activity
traces for these modes, coloured to match the areas on the left. Solid traces
show activity within the CCAmode in V1. Dotted traces show activity in the
targetarea’s CCAmode.Scalebar, 5s.d, Aggregate neural Ca* signalsin one

cortex about stimuliidentity was shared between areasin these modes,
which conveyed almost nothing about the mouse’s upcoming response
(Fig. 5e-f and Extended Data Fig. 9a). Later, around 1 s into stimulus
presentation, on Go trials the global cofluctuation mode encoded
the upcoming response but no stimulus information, consistent with

1.5

0
Time (s)

T?ﬁ% (s) Time (s) Time (s)

mouse within the population vector dimensions determined by the largest
three CCAmodes (columns), for four different area pairs (rows) and trial
outcomes (coloured traces). The dashed line marks the stimulus onset.
Ordinate values are shifted and normalized to lie within [0,1]. Data are

mean +s.e.m.n=100-678trials. e, Right, the global fluctuation mode,
identifiedina, liesinthe dimension encodinginformation latein the stimulus
period about the mouse’s upcoming response. Left, the second- to fifth-largest
CCAmodeslieindimensions encoding stimulus type. Theresults are froma
CCAanalysisof V1,LV,MV,PPC, Aand Sin which the cellensembles
significantly encoded stimulus type or the mouse’s upcoming response
(P<0.01, permutation test across trials of different types, using equal trials of
eachtype; n=>52-854trials per type per mouse). We analysed the 15 area pairs,
projected activity in each area onto the dimensions identified, and computed
how muchinformation, (d’)? this activity subset encoded about the

stimulus type (on Lick and No-Lick trials, on which the mouse, respectively,
did or did not exhibit alicking response during the response interval), or
about the upcoming response (on Go trials). The time-varying (d’)* values,
averaged over both projections for each of 15area pairs in 6 mice, are shown for
the10largest CCA modes (Extended DataFig. 8).f, To determine the
proportion of stimulusinformation shared through CCA modes, we plotted
the totalinformation encoded in CCAmodes between asource (coloured
traces) and the other seven areas, relative to the total information encoded
withinthe source. Visual areas had a preponderance of their stimulus
information encoded within CCA modes, especially early during stimulus
presentation. Ratios for non-visual areas peaked laterin the trial. Dataare
mean +s.e.m.over six mice (Extended Data Fig. 9a).

our ability to decode upcoming responses on Go but not No-Go trials.
Overall, the neocortex uses non-interfering communication chan-
nels, thatis, orthogonal cofluctuation modes, to convey stimulus-and
response-related signals to distinct sets of areas, in a targeted and
global manner, respectively.
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Discussion

By tracking neurons across all visual cortical areas, our study reveals
information-processing mechanisms that are likely to underlie reliable
sensory performance. Historically, neuroscientists viewed correlated
neuronal fluctuations asimposing limits on coding accuracy>>™, which
our study supports. However, our data also show that accounting for
correlated fluctuations facilitates the long-term reliability of neural
populationactivity decoders, because day-to-day variationsin popula-
tion coding strongly correlate with the faster coding variations occur-
ring within individual days. This similarity across timescales arises
even in simple network models and enables decoding strategies that
are intrinsically robust to both forms of variability (Supplementary
Information). Decoders that neglect correlated fluctuations lack this
dual robustness.

Beginning <100 ms and reaching an apex around 200 ms after stimu-
lus onset, task-related neurons across the cortex momentarily increase
their correlated fluctuations for ~300 ms. Importantly, these rapid
dynamicsinnoway conflict with reports that variability in the activity
of individual cells declines after stimulus onset®, a pattern that our
data confirm (Extended Data Fig. Se-g). Moreover, the modulation of
shared fluctuations seen here in mice performing a visual task contrasts
with findingsin untrained mice passively viewing stimuli, during which
modulations of shared fluctuations were unapparentin V1%. Thus, task
performance, long-term training or both might alter the dynamics of
correlated fluctuations®.

The stimulus-evoked increase in shared fluctuations among
task-related cells boosts the redundancy of cortical representations
severalfold withina~-300 msinterval. The transient, shared fluctuation
modes convey a majority (about 80%) of sensory information across
cortical areas within signalling streams orthogonal to that conveying
the animal’s response. Here, information about the mouse’s upcom-
ing response arose in a unique, global mode of fluctuations starting
around 0.6 s and peaking about1s after stimulus onset. In visual tasks
without a delay period, choice-related fluctuations arose sooner after
stimulus onset***,

Inour experiments, the time-interval following the redundancy peak,
namely 0.5-2 s after stimulus onset, was when our stimulus decoders
attained a stable form (Fig. 3b). Our analyses of long-term decoder
stability used data from this 0.5-2 sinterval and showed that common
decoders cansucceed across days without need for daily adjustments.
However, these results carry noimplications regarding the long-term
stability of stimulus decoders trained on time bins within the 0-0.5 s
interval, during which decoder forms were changing too rapidly for
us to draw conclusions about long-term stability.

Therise and decay of shared fluctuations seen here after stimulus
onset may reflect successive feedforward and feedback phases of infor-
mation flow across sensory cortical areas****, In this view, the early
sensory cortex uses redundant, inbound sensory datato represent the
basic features of a stimulus within the first few hundred milliseconds
ofitsappearance; duringlater sensory processing, probably involving
feedback from higher-order areas, the representations become less
redundant and more efficient. This transition, which probably occurs
more quickly in primates than mice, may reflect a shift in spiking pat-
terns from those driven initially mainly by incoming sensory signals,
arriving through overlapping connections, to those reflecting aris-
ing influence of top-down or recurrent signals propagating through
distinct circuitry. This processing shift may help to relate local visual
features to their global context or task demands* *,

Thetime-varying, anatomic patterns of shared fluctuations are likely
to support inter-area communication within distinct subnetworks.
Human neuroimaging studies describe a ‘default-mode’ network
of areas with characteristic cofluctuations that typify the brain’s
resting state’, and other sets of functionally connected areas that
cofluctuate during performance of specific tasks?. Here, inter-area
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cofluctuations during a visual task differed from those during ITls,
providing cellular-level evidence of task-dependent changes in the
brain’s functional connectivity. Bolstering the idea that shared fluctua-
tions subserve specific components of animal behaviour, information
about sensory stimuli and upcoming responses was communicated
todistinct groups of areas, in orthogonal fluctuation modes and with
distinct timing. Future work should quantify the extent to which fluc-
tuation modes are task specific or generalize across tasks with similar
components.

It is striking that response-related data were transmitted within
aglobal fluctuation mode that engaged every area examined. Past
observations of widespread fluctuations came from animals with no
active task to perform'®" or in which fluctuations reflected spontane-
ous movements or arousal®. Notably, widespread dissemination of
perceptual decisions across brain areas distinguishes some models of
conscious perception® and, when related to reward expectation, is a
key element in some models of reinforcement learning*. As previous
reports suggest that brain connectivity might resemble ‘small-world’
networks**8, we simulated small-world networks with varying con-
nectivity and linear dynamical fluctuations, but they all lacked aglobal
fluctuation mode; however, networks in which a single source broad-
casted common signals to multiple areas did exhibit a global mode
(Extended Data Fig. 9). Future research should determine whether
such a broadcast exists in the mammalian brain and, if so, in which
areaor areasitoriginates.
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Methods

Mice

The Stanford University Administrative Panel on Laboratory Animal
Care approved all procedures using animals. For imaging studies of
layer 2/3 neocortical pyramidal neurons in live mice, we used 4 male
and 2 female triple transgenic GCaMP6f-tTA-dCre (Rasgrf2-2A-dCre;
Camk2a-tTA; Ai93) mice developed by the Allen Institute. Mice were
10-16 weeks old at the time of surgery. Because there was only one
group of mice, randomization and blinding procedures for the assign-
ment of mice to different groups were not applicable. We did not use
formal statistical methods to predetermine the sample size butinstead
replicated our main findings in all six mice used.

Surgical procedures

To prepare mice for in vivo imaging sessions, we performed surger-
ies while mice were mounted in a stereotaxic frame under isoflurane
anaesthesia (1.5-2% isoflurane in O,). Toreduce post-operative inflam-
mation and pain, we administered a preoperative dose of carprofen
(5 mg kg™; subcutaneousinjectioninto the mouse’s lower back), which
werepeated once aday for 3 days after the surgery. We created a cranial
window by removing a 5-mm-diameter skull flap (centred at AP -2.5,
ML 2.7) over theright cortical area V1and surrounding cortical tissue.
We covered the exposed cortical surface with a 5-mm-diameter glass
coverslip (no.1thickness, 64-0700, CS-5R, Warner Instruments) that
was attached within a circular steel annulus (1 mm thick, 5mm outer
diameter, 4.5 mminner diameter, 50415K22, McMaster) and secured to
the craniumusing ultraviolet-light curable cyanoacrylate glue (Loctite,
4305). Using dental acrylic, we cemented a metal head-plate to the
skull for head-fixation during imaging. In vivo brain imaging studies
commenced at least 7 days after surgery.

Retinotopic mapping

To locate the boundaries of the visual cortical areas, we performed
retinotopic mapping of the visual cortex in awake mice using widefield
Ca*'imaging by adopting a protocol that was used previously for reti-
notopic mapping by intrinsic signal imaging**-2. Asin all subsequent
imaging experiments, we held mice on top of a 11.4-mm-diameter
Styrofoam ball (Plasteel) using a two-point head-holder positioned
under the objective lens of our custom-built epi-fluorescence mac-
roscope (see the ‘Fluorescence macroscope’ section below; Fig. 1a).
The Styrofoam ball floated on a thin layer of water within a plastic
bowl of nearly identical diameter (Critter-Cages), as previously
described®.

Mice viewed a visual stimulus comprising a drifting bar (10° wide)
displayed onavideo monitor positioned 13 cm from the left eye. The bar
sweptacross the entire monitorin14 sataspeed of 7° s*and was filled
internally with a contrast-reversing checkerboard pattern (0.035 per
degree spatial frequency; 1.25 Hz temporal frequency of checkerboard
reversal). The bar drifted either left, right, up or down on the monitor;
eachmouse viewed 100 repetitions of this stimulus for each direction
of motion. The monitor remained grey for a2 s interval between suc-
cessive stimulus repetitions***'. Throughout the mapping session, we
imaged baseline and evoked neocortical Ca** activity using the fluo-
rescence macroscope.

The visual stimulus used for mapping generally evoked retinotopic
neural Ca® activity across the visual cortex, followed by a strong decline
in Ca*" activity below baseline levels. For each direction of stimulus
motion, we computed the trial-averaged video of evoked Ca* activity, M
(athree-dimensional matrix with spatialindicesiand,,and atemporal
indext), across all100 stimulus repetitions, temporally aligned to the
moment of stimulus onset. To map positions of the moving bar within
the visual field to the corresponding anatomic coordinates within
the visual cortical retinotopic maps, we calculated the phase of Ca*
excitation within the i,jth pixel at each time ¢t by approximating Mwith

afactorized model of amoving wave for each stimulus direction, so as
to minimize the reconstruction error:

Minimizeyy,, 2 ... (Myo= Ay f(e=p,;))%.

Through this factorization, we approximated the average video M
using a single waveform, f, with amplitude, A;, and phase, p;, at the
i,jth pixel. We determined the values for the matrices, A and p, and
the function, f, by using gradient descent to minimize the squared
reconstruction error, summed over all pixels and time bins. We spatially
smoothed the resulting phase maps using a Gaussian low-pass filter
(0=40 pm) (Extended Data Fig. 1e).

On the basis of the smoothed phase maps determined for the
vertical and horizontal directions of stimulus motion, we located the
boundaries between V1 and the secondary visual areas (the medial
visual (MV) and lateral visual (LV) cortical areas)*. We inferred the
locations of other cortical areas by aligning the Allen Brain Atlas
cortical map®* to the V1 boundaries determined in each mouse.
Throughout the paper, for simplicity, we refer to the union of the
lateromedial (LM) and anterolateral (AL) cortical areas as the LV, to
the union of the anteromedial (AM) and posteromedial (PM) areas as
the MV areas, and to the union of the rostrolateral (RL) and anterior (A)
areas as posterior parietal cortex (PPC). This grouping of the smaller
secondary visual areas reduced to 8 the number of areas used in our
subsequent analyses.

Training procedure and behaviour

We trained mice to perform the Go/No-Go task through succes-
sive stages of training (detailed below) that enabled us to gradually
increase the complexity of the task performed by the mice while also
ensuring that the association between visual stimuli and rewards
remained stable. All of the mice in this study associated a Go stimu-
lus with a horizontal grating orientation. To prevent light from the
visual stimuli from entering the fluorescence collection pathway of
the microscope, the stimuli used only the blue component of the RGB
colour model, whichwas blocked by the fluorescence emission filter.
We also placed a colour filter (Rosco, 382 Congo Blue) on the moni-
tor screen. The mean luminance from the stimulus at the mouse eye
was approximately 5 x 10" photons mm2s™, which is more than two
orders of magnitude higher than the transition threshold to photopic
vision in mice.

In the first stage, we trained water-deprived mice (target weight,
80% of initial body weight) to respond to a100% contrast single drift-
ing grating stimulus (2 s in duration; 2 Hz temporal frequency; 0.04
per degree spatial frequency; located within a 40° wide circle at the
centre of a video monitor positioned 13 cm from the eye throughout
all stages). Inthe first stage, mice learned that, by licking a spout dur-
ing presentation of the Go stimulus, they would immediately receive a
drop of 5% sucrose in water (-5 pl per drop). After afew days of training,
mice that consistently licked only during Go trials progressed to the
next stage of training.

Inthe second training stage, in addition to the Go stimulus, mice also
viewed an orthogonal drifting grating stimulus or No-Go stimulus. Simi-
larly to the first stage, mice were trained to respond on Go trials during
the grating presentation, but we also included a grace period (1s) atthe
onset of the grating stimuli that did not count towards aresponse. This
allowed for some level of compulsive licking. After the grace period,
if mice responded during No-Go stimuli, they received two aversive
stimuli: (1) a small air puff (100 ms long) delivered to one eye of the
mouse (contralateral eye to the stimulus); (2) simultaneously with
the delivery of the air puff, the trial aborted and an 8 s timeout period
occurred, during which the video monitor was held entirely grey atits
mean luminance value. During this timeout, any additional lick(s) by
the mouse resulted in the delivery of additional air puff(s). Once mice
learned to performthe visual discrimination correctly on>75% of trials



by lickinginresponse to the Go stimulus and notlicking in response to
the No-Go stimulus, training progressed to its next stage.

In the third training stage, we sought to create a separate response
window so that rewards would not be provided at the same time as
presentation of the visual stimuli. In this stage, mice learned to with-
hold their licks during stimulus presentation and to wait for aresponse
period that was cued by anauditory tone (3.4 kHz; 100 ms duration). As
inthe second training stage, if mice licked during the visual stimulus
they automatically received an air puff and a timeout (timeout dura-
tion was 3 sin the third training stage). As this training stage was the
most challenging for the mice, we gradually increased the duration of
the delay period either from session to session, or in three sub-blocks
within one session, such that each mouse eventually performed the
task with a delay of 0.5 s between the stimulus period (2 s duration)
and the response period (3 s duration).

On a final day of training, we decreased the contrast of the moving
gratings on both the Go and No-Go trials to between 50% and 12% to
increase the proportionoferror trials. Mice received only a single day
oftraining on which the visual discrimination task was presented with
this reduced level of visual contrast. By the end of training, all of the
mice used for neural Ca?" imaging studies performed the task with an
accuracy of >75% with the low-contrast stimuli, for both Go and No-Go
trials (Extended Data Fig. 1g, h; 83 + 3% correct trials; meants.e.m.;n=6
mice). Mice took 21-29 days of training (mean: 25 days; n = 6 mice) to
reach the end of the training protocol.

Fluorescence macroscope design

Toimage neural Ca®* activity across 11 mouse cortical areas, we designed
and built a custom wide-field fluorescence macroscope with afield of
view spanning 4 mm in diameter (Fig. 1a). For epifluorescence illumi-
nation, we used alight-emitting diode (LED) (Thorlabs, M470L2) with
an emission spectrum centred in the 440-480 nm range. The imag-
ing pathway comprised an objective lens (Leica, x5.0 Planapo 0.5 NA;
19 mm working distance; anti-reflection coated for 400-1,000 nm
light; transmission >90% at 520 nm), a tube lens (75 mm focal length;
Thorlabs, AC508-075-A-ML), a custom fluorescence filter cube (exci-
tation filter, Semrock FF01-466/40-25; dichroic mirror, Semrock
FF495-Di03, custom-sized to 35 mm x 50 mm; emission filter, Semrock
FF02-525/40, custom-sized to 30 mm x 30 mm) and a scientific-grade
CMOS camera (Hamamatsu ORCA-Flash4.0 V2 sCMOS). To control
image acquisition, we used the HCImage software (Hamamatsu), which
communicated with the camera through an Active Silicon Firebird
Camera Link Board.

To collect light from the LED, we used a 75 mm focal length focus-
ing lens (Thorlabs LA1680, Thorlabs) to project convergent rays of
excitation light at the back aperture of the microscope objective. We
aligned the focusing lens to provide approximately uniform illumi-
nation across the field of view (5 mm diameter), that s, close to the
regime of Kohler illumination, while also ensuring that that the illu-
mination rays were divergent as they entered the brain. The purpose
of this illumination strategy was to create more intense illumination
within neocortical layer 2/3 and to reduce fluorescence excitation
within out-of-focus, deeper cortical layers. To improve the optical
resolution at the periphery of the field of view, beyond the nominal
~2-mm-diameter field of view of the objective lens, we reduced the
effective numerical aperture by placing a10-mm-diameter iris at the
back aperture of the objective lens.

We built the opto-mechanical assembly using a combination of
commercially available components (Thorlabs) and custom-designed
mechanical parts machined in high-strength 7075 aluminium. The
entire macroscope was mounted onamanual vertical translation stage
that enabled the user to conveniently adjust the image focus by mov-
ing the entire optical pathway of the macroscope while the specimen
was held immobile on the vibration-isolation table upon which the
macroscope was built.

Image acquisition and preprocessing

We acquired Ca* videos of neural activity (20 fps, 2,048 x 2,048 pixels)
onthe fluorescence macroscope using 40-160 pW mm 2illumination.
Custom software writtenin MATLAB (v.2013b) controlled the presenta-
tion of the visual stimuli to the mouse, ran the behavioural apparatus
viaaNI-USB 6008 card and triggered the start of video capture on the
fluorescence macroscope.

Aftervideoacquisition, we downsampled eachvideoto1,024 x 1,024
pixels and 10 fps. We next corrected videos for lateral movements of the
brain using the Turboreg software package for image alignment®. To
remove scattered fluorescence and background fluorescence signals
from neuropil or neural elements outside the focal plane, we applied
aGaussian spatial high-pass filter (¢ =80 pm) and calculated the video
of relative fluorescence changes, AF(t)/F,, for each imaging session,
where F,is the mean activity of each pixel over the entire session and
AF(t) is the mean subtracted activity of each pixel at time ¢.

To quantify the slight lateral spatial displacements of the field of
view between differentimaging sessions, we computed the maximum
projectionimage of each session’s AF(¢t)/F, video over its entire duration
(around 1 h per session). We used the MATLAB imregtform() function
to find the optimal ‘similarity’ transformations (translation, rotation
and scaling) between the maximum projectionimage determined for
the firstimaging session and each of the other individual sessions. We
aligned all Ca®* videos to the video from the first session using this same
set of transformations. Finally, we concatenated the aligned AF(t)/F,
videos fromall sessions and proceeded to extractindividual cells and
their Ca®* activity traces (see below; Extended Data Fig. 1).

Cellsorting

We extracted the activity of individual neurons from the concatenated
AF(t)/F, videos through the successive application of principal and
independent analyses (PCA/ICA)%. We divided the concatenated,
preprocessed Ca®* video from each mouse (about 1 TB in size) into 16
tiles; each tile comprised 256 x 256 pixels collectively covering about
1mm x I mmin the specimen plane. We ran PCA/ICA in parallel for all
16 tiles on 16 separate computing nodes (20 cores per node; 320 total
cores; about 4 TB of random-access memory (RAM) for each video) and
thereby identified Ca?* activity traces and spatial filters for individual
neurons. To isolate each cell soma, we thresholded each cell’s spatial
filter at 4 s.d. of its noise fluctuations (determined by fitting a Gauss-
ian distribution to the negative values of each cell’s spatial filter) and
replaced all filter weights below this threshold with zeros. To attain a
final set of Ca**-activity traces, we reapplied the truncated spatial filters
to the AF(t)/F,video (Extended Data Fig. 1).

To separate the sources of Ca*" activity that represented individual
cellsfromthose that did not, foreach mouse, we took 3 of the 16 image
tiles and we manually identified individual neurons on the basis of
both their morphologies and the temporal waveforms of their Ca*
transients. To identify cells located within the other13 tiles, we trained
3 different types of binary classifiers (support vector machine (SVM),
generalized linear model (GLM) and neural network) to perform the
classification by using the set of manually identified cells as training
data and a set of 12 predefined cellular features that characterized a
candidate neuron’s morphology (spatial features: eccentricity, diam-
eter, area, orientation, perimeter and solidity) and Ca*" activity trace
(mean peak amplitude of Ca* transients; signal-to-noise ratio between
Ca®* transients and baseline fluctuations; number of Ca* transients
peaks that were 3 s.d. above baseline fluctuations; the number of Ca*
transients peaks that were 1s.d. above baseline fluctuations; the dif-
ference of the mean decay and mean rise times of the Ca®* transients,
normalized by the sum of these two values; and the FWHM of the aver-
age Ca*" transient) to perform this classification. We used the trained
classifiers toidentify cells in the 13 remaining tiles based on a majority
vote of the 3 classifier outputs. We manually checked that every cell
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determined by this algorithmindeed met our visualinspection criteria
to qualify asaneuron.

Event detection and definition of active cells
Using the fluorescence activity traces for the sources identified as neu-
rons, we created binarized Ca* event traces for each cell (100 ms per
time bin). To do this, we first subtracted the median level of fluorescence
from each trace; we then calculated the s.d. of each cell’s fluorescence
fluctuations about baseline by fitting the statistical distribution of the
activity trace’s negative values toa Gaussian function constrained to have
zero mean. To identify individual Ca** events, we looked for individual
Ca” transientswith peak amplitudes >4 s.d. above baseline fluctuations.
Theresulting binarized event traces had entries of ‘1’ between the time
atwhich the fluorescence amplitude of aCa® transient surpassed 4 s.d.
andthe time at which the fluorescence amplitude started its decline back
to baseline levels (Extended Data Fig. 1b). Entries were ‘O’ for all other
time bins. To account for slight day-to-day variations in the illumina-
tion, optical focal plane or amplitude of fluorescence fluctuations, we
performed these computations separately for each imaging session.
To determine whether a cell was active during anindividual imaging
session, we counted the number of time bins in the session in which
the cell’s fluorescence emission was >3 s.d. above baseline fluctua-
tions. We considered the cell to be ‘active’ if this number was >2 times
greater than what would be predicted on the basis of a null hypothesis
that the fluorescence variations simply reflected Gaussian-distributed
noise (that is, the prediction that 0.27% of the time bins per session
should have trace values >3 s.d. above baseline fluctuations) (Fig. 2a
and Extended Data Fig. 1d).

Assessments of spatial alignment quality

To evaluate the quality of spatial registration between datasets from
differentimaging sessions, we computed the spatial cross-correlation
functions between corresponding image patches, (256 pm x 256 pm
in size) within the maximum projection images determined from the
Ca?' videos from the first imaging session and one of the subsequent
sessions. We determined the slight day-to-day shifts ineach patch’s loca-
tionby finding for each session the displacement value corresponding
tothe peak amplitudeinthe cross-correlation function (Extended Data
Fig. 2a). By sliding the location of the 256 pm x 256 pm patch used in
this computation across the field of view, and computing the spatial
cross-correlations for each location of the patch, we constructed maps
of spatial displacement across the imaging field. These displacement
mapsrevealed that our spatial alignments were almost perfect near the
centre of the field of view (mean displacements, <1 pixel), and slightly
deteriorated near the corners of the field of view (mean displacements
=1 pixel).

To evaluate how these small imperfections in spatial registration
might have affected alignments of cells and their identities across
imaging sessions, we determined the displacement of each cell across
sessions by examining 256 pm x 256 pm image patches centred on
each cell on each day of the experiment and then computing spa-
tial cross-correlation functions as above. We determined each cell’s
day-to-day displacements in the datasets by identifying the maxima
of these cross-correlations. This analysis showed that 98.5% of cells
exhibit <1 pixel displacement across days (Extended Data Fig. 2b). We
calculated each cell’'s mean displacement across all imaging sessions
and plotted the cumulative distribution of cells’ displacements by pool-
ingthe datafromall of the mice (Extended Data Fig. 2c). For eachcell, we
alsomeasured the distance to the nearest neighbouring cell and plotted
the cumulative distribution of these values for all of the mice (Extended
DataFig. 2d). These two cumulative distributions revealed that only a
small percentage (-2%) of nearest neighbor cell pairs were separated by
<5um, whereas 95.4% of cells had mean day-to-day displacements that
were <5%, indicating that slightimperfections inimage alignment were
highly unlikely to affect the registrations of cells’ identities across days.

Analyses of single-cell coding

Tocharacterize the extent to which individual neurons responded dif-
ferentially to the two visual stimuli, we calculated the fidelity, d’, with
which the two stimuli could be distinguished on the basis of a cell’s
stimulus-evoked dynamics:

’ Moo= Mno-co
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where M, and My, ¢, are mean values and 0%;, and 6, ¢, are variances
of the cell’s evoked Ca** dynamics (based on the binarized Ca* event
traces) inresponse to Go and No-Go stimuli. We computed these quan-
tities as trial-averages across either the stimulus, delay or response
periods of the correctly performed trials, as specified in the figure
captions. To allow even-handed comparisons between single-cell
and neural population coding properties, for analyses of single-cell
stimulus-evoked responses, we used the same time interval within
the stimulus presentation period, [0.5 s, 2 s] after stimulus onset, that
we used to train consensus decoders (see below). We also computed
adistribution of @’ values for a set of trial-shuffled datasets, denoted
d’gume - We created the set of trial-shuffled datasets by performing 1,000
random permutations of the Go and No-Go trial labels. We determined
that anindividual neuron coded significantly for stimulus identity
during the stimulus, delay or response periods if the cell’s d’ value for
that period was significantly greater thanits d’y, . values for the same
interval (P < 0.01; permutation test; n = 710-1,340 trials). All analyses of
single-cell coding, as well as those of neural ensemble coding and CCA
modes were performed using only those trials on which the mouse’s
locomotor speed remained <1 cm s™ throughout the trial.

Decoding neural population activity with optimal linear Fisher
decoders

To quantify the information conveyed by neural ensemble dynamics
abouteither the visual stimulus or the mouse’s response, we used partial
least squares analysis (PLS) as a supervised method for performinga
dimensionality reduction, followed by optimal linear decoding in the
space of reduced dimensionality, to determine &’, the fidelity with
which the two stimuli or two responses could be distinguished on the
basis of the activity patterns of the neural ensemble. The quantity (d’)*
isadiscrete analogue of the Fisher information conveyed by the neural
ensemble about the binary classification®. Recent theoretical and
computational work has shown that this approach for determining (d’)*
canyield accurate estimates evenin the regime in which the number of
experimental trials is far less than the number of neurons®.

Forall decoding studies, we started by dividing all trials performed
by each mouse into two distinct subsets, one used for decoder train-
ing and the other for decoder testing, and we represented the neural
ensemble activity datain each subset using a three-dimensional tensor.
Thetensor elements, T, denoted the binarized activity of cellion trial

jattimebin k (Extended Data Fig. 3¢). To train decoders, we used two
different ways to convert these tensorsinto two-dimensional matrices.

Inthefirstapproach, we fixed the value of kin the tensor and trained a
separate decoder based on the two-dimensional datamatrix, X, created
foreachtimebin, k. We termed these decoders ‘instantaneous decod-
ers’,because they enabled us to study the time-dependent dynamics of
neural ensemble representations (Fig.3a,b and Extended DataFig. 3f, g).
Notably, however, the instantaneous decoders of stimulusidentity were
largely stationary across theinterval [0.5 s, 2 s] after stimulus onset. On
thebasis of this finding, we also pursued asecond decoding approach
thatinvolved what we termed asingle ‘consensus decoder’, which was
designed to capture the non-dynamical aspects of the neural ensemble
stimulus representations acrossalltimebinsinthe[0.5s,2 s]interval.

In this second approach involving the consensus decoder, we
took all 15 time bins of 100 ms each within the [0.5 s, 2 s] interval and



concatenated the data from these time bins along the trialindex dimen-
sion, yielding atwo-dimensional datamatrix, X;. This matrix contained
the datafromthe same number of cells as used for instantaneous decod-
ing, but the effective number of trials was 15 times larger (Fig. 3c-jand
Extended DataFig. 3g). We used these matrices X;;to train the consensus
decoders of either stimulus identity or the mouse’s response.

An important consideration when training optimal linear Fisher
decoders of either the instantaneous or consensus type was the fact
that Fisher decoders require an estimate of the inverse of the noise
covariance matrix of the neural ensemble activity patterns. When the
number of recorded neurons surpasses the number of experimen-
tal trials, one cannot accurately estimate the individual elements of
the noise covariance matrix. However, the principal eigenmodes and
eigenvalues of this matrix can be determined accurately with amuch
smaller number of trials than neurons, whichin turnenables accurate
decoding and estimation of (¢’)* values®.

Toachieve these estimates, asin our previous work, we first used PLS
analysis to perform a supervised linear dimensionality reduction® by
identifying dimensions of the neural population activity in which the
amplitude is correlated with the outcome of the binary classification
task®®*°, The decoding strategy involved retaining amoderate number
of these activity dimensions—while discarding the others—and then
computing the optimal linear Fisher decoder and its associated d’ value
in this space of reduced dimensionality.

To train the optimal linear Fisher decoder for one of the binary
classifications (that is, of either the stimulus identity or the mouse’s
response), we split the two-dimensional data matrix, X, as determined
above, into two subsets, X* and X%, corresponding to the pair of con-
ditions to be decoded. Specifically, the conditions A and B referred
either to the two different visual stimuli or the two different possible
responses by the mouse. Each row of the matrices X*and X’ represented
the neural activity data on a trial of type A or B, and each column rep-
resented the activity datafrom anindividual neuron across all trials of
this type. Werandomly subsampled (with no replacement) the rows of
X*and X? to create three distinct equally sized smaller data matrices,
denoted X, X, and X, which we used for dimensionality reduction,
decodertrainingand decoder testing, respectively, such that all of the
data from any given trial were used in only one of these three matri-
ces. Specifically, we used X, to find the set of PLS basis vectors, which
comprised the columns of a coordinate transformation matrix, U. We
transformed the training and testing datasets into the coordinate sys-
tem defined by these PLS basis vectors:
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We systematically varied from 1-50 the number of PLS dimensions
retained for the decoding analysis; the s symbol indicates the vector
space of reduced dimensionality. To determine the number of retained
dimensions that yielded the highest decoding performance, we evalu-
ated and optimized decoder performances througha cross-validation
procedure (Extended Data Fig. 3c). Specifically, in the space of reduced
dimensionality, we computed the optimallinear Fisher decoder, w,,,
from the training datasets, using the formula
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where X =0.52" + 0.52% is the average noise covariance matrix and
Ap = p” - pf is the vector difference between the trial-averaged
responses under conditions A and B. Apis also termed the ‘diagonal
decoder’,namely alinear decoder that accounts for the mean responses
under conditions A and Bbut not the covariances in these responses.
We determined the binary decision boundary for the optimal linear
decoder as the hyperplane normal to w,,, that bisected Ap. To attain

adecoder output or ‘score’ for an individual trial in the experiment,
we projected the neural population dynamics from that trial onto w,,,
and then subtracted 0.5, * W, Where L, is the mean of p* and p?,
sothedecoderscore would have zero mean when averaged across aset
oftrialswith equal numbers of A and Btrials. We determined the binary
classification using the sign of the score. Using the testing dataset, we
estimated the discriminability of the two trial types, (d’,,.)*:
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We repeated this process 100 times using 100 different random subsam-
plings of the trials for the construction of the dimensionality reduction
dataset, the training dataset and the testing dataset.

To examine the extent to which visual stimulus encoding remained
stationary over the course of the experiment, we trained an optimal
‘commondecoder’ onthe datarecorded across allimaging sessions. To
create the common decoder, we pooled all the data from each mouse
and divided this aggregate set of data as described above into three
subsets to be used for dimensionality reduction, decoder training and
decoder testing. Given this division and using the procedures described
above, we trained a consensus decoder for the interval[0.5 s, 2 s]after
stimulus onset, yielding anacross-day common decoder. We addition-
ally assessed the values of (¢’)*for this common decoder on the testing
datasets from the individual imaging sessions. This analysis revealed
that the performance of the common decoder generally slightly sur-
passed that of decoders trained and tested on data exclusively from
one imaging session (Fig. 3c and Extended Data Fig. 3i).

Analysis of error trials to distinguish neural coding of visual
stimuli and mouse responses

On trials on which mice performed the Go/No-Go task correctly, the
visual stimulus and the mouse’s response are perfectly correlated, pre-
cluding determinations of whether neural activity during the stimulus
presentation is primarily evoked by the stimulus or also influenced
by the mouse’s visual decision or information processing related to
its upcoming response. To address this issue, we analysed error trials
and trained decoders of neural ensemble activity that were sensitive
to only the stimulus or only the animal's decision, while keeping the
other factor fixed.

For example, on Go trials the mouse could either lick (Hit) or not
lick (Miss) (Fig. 1b). By training a ‘response decoder’ to discriminate
between Hit and Miss trials on the basis of the neural activity during the
stimulus presentation period, we estimated the encoded information
about the mouse’s upcoming response while it observed the Go stimu-
lus. As Hit trials were far more common than Miss trials, we randomly
subsampled the set of Hit trials to construct unbiased datasets with
equal numbers of Miss and Hit trials. Using these datasets, we trained
consensus common decoders of neural population activity following
the procedures discussed in the section above, as there were insuf-
ficient numbers of incorrectly performed trials to accurately train
instantaneous decoders. Analyses of the visual stimulus period were
based on the same interval, [0.5 s, 2 s] after stimulus onset, that was
used to construct trial-type decoders. As the timing of the mouse’s
responses differed from trial to trial and across trial types, we sought
to retain sensitivity to the time dependence of coding by evaluating
the response decoders’ (d)* values across the individual time bins of
the trial structure. To construct the plots of Extended Data Figs. 3k and
4b-g, we identified the time bin of each trial with the maximum (d")*
value and used that (d’)? value when tabulating the results across trials
and mice. Our decoding results revealed distinct patterns of neural
activity during Go stimulus presentations that were predictive of the
mouse’s upcoming response. We also executed anidentical decoding
analysis using equally sized datasets constructed from the neural activ-
ity recorded onNo-Go trials (thatis, Correct Rejection and False Alarm
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trials). However, in this case, we did not find neural activity patterns
during stimulus presentation that predicted the mouse’s response
(Extended Data Figs. 3k and 4e). As the response decoders trained on
GoandNo-Go trials were constructed using equally sized datasets, the
differences in their performances cannot be readily explained as due
to adiscrepancy in statistical power.

Todeterminewhether visual stimulus coding during stimulus presen-
tation might have been affected by the mouse’s upcoming response, we
trained and evaluated separate common consensus stimulus decoders
forLick trials (False Alarm and Hit) and No-Lick trials (Correct Rejection
and Miss), using the same methods as for response decoders and with
equally sized datasets that were constructed through subsampling. This
analysis yielded no evidence that the quality of stimulus representa-
tions was impacted by the mouse’s upcoming response (Extended
DataFigs. 3k and 4b).

Calculations of information redundancy across cortical areas

To assess the extent to which Fisher information about the stimulus was
represented independently across different cortical areas, we exam-
ined inter-area correlations in the output scores of the instantaneous
neural activity decoders (see above). We quantified these correlations
separately for the two types of correctly performed trials and then
averaged the resulting correlation coefficients.

The results revealed that fluctuations in neural ensemble activity
along the stimulus coding direction were strongly correlated between
the different sensory areas just after stimulus onset and then progres-
sively decayed (Fig.4a-cand Extended Data Fig. 6). If information were
represented independently in the different cortical areas, the sum of
the information encoded in each of the individual brain areas would
equal that encoded in the aggregate of all the brain areas?. Positive
correlationsinthe decoder scores from different brain areas canreflect
redundancy (Fig. 4d) such that this equality is not met and there are
shared copies of the same information®:
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Determination of noise correlations among neuron pairs
Tomeasure noise correlations between pairs of similarly tuned neurons,
we trained instantaneous population decoders of the stimulus based
on the neural activity recorded in each mouse on all trials performed
correctly (see above). We selected cells that significantly contributed
to each decoder by identifying those cells with decoder weights that
deviated >2 s.d. from the mean value across the entire set of cells con-
sidered (Fig.3g-j). We divided the resulting set of cells into two groups
based on the sign of the individual cells’ mean-subtracted decoder
weights as an indicator of similarity in the cells’ tuning to the visual
stimulus. We then computed the noise correlation coefficients char-
acterizing the joint activity fluctuations of pairs of cells around their
mean responses. We averaged the values of these coefficients over
the two types of correctly performed trials. The time dependence of
these correlations closely resembled that of the noise correlations in
decoder scores across brain areas (see above).

Inouranalysis, we did not find substantial noise correlations between
cells with dissimilar stimulus tuning or between cells without stimulus
tuning. This is in agreement with our past findings in untrained mice
viewing moving grating stimuli that differed by 60° in orientation’but,
here, with trained mice actively performing atask involving an orthogo-
nal pair of moving grating stimuli, the differences between the distribu-
tions of noise correlation coefficients between cell pairs with similar and
dissimilar stimulus tuning were more substantial***° (Fig. 3m).

To estimate the time-dependent mean variability, 0(¢), of indi-
vidual neuronal responses in each mouse, we computed the variance
in the activity level of each cell at time, ¢, relative to stimulus onset,

acrossthe setof all correctly performed Go and No-Go trials. We aver-
aged the results across all cells and both trial types. To compute the
time-dependent Fano factor across the set of all neurons (Extended
DataFig. 5e), we divided 0*(¢) by u(t), the cells’ mean response at time
t,averaged over all cells and correctly performed trials. Both ¢%(¢) and
the Fano factor declined after stimulus onset, consistent with previous
studies® (Extended Data Fig. 5e).

Determinations of information saturation in large neural
ensembles

Previous theoretical and recent experimental work has shown that
the Fisher information encoded in the dynamics of a cortical neural
ensemble saturates at large ensemble sizes, due to the existence of
eigenvectors of the noise covariance matrix with eigenvalues that
grow linearly in the limit of large ensemble size****?* (Extended Data
Fig. 5a). To characterize this information saturation at each time bin
after stimulus onset, we trained instantaneous decoders of the visual
stimulus based on the activity of a subset of the neurons recorded in
each brain area. We systematically varied the size of this subset and
measured the encoded information using the decoder (a’)* values for
eachensemblessize, as averaged over 100 random selections of neurons
for eachtime bin during which the entire cell population significantly
encoded information about the stimulus (P < 0.01; permutation test;
n=710-1,340 trials). We normalized the (d’)* values from each time
bin to the total information encoded by all neurons during this same
time bin.

In agreement with recent studies of V1*%, in all of the cortical areas
examined here theinformation encoded by a cell ensemble saturated
at large ensemble sizes (Extended Data Fig. 5a). Furthermore, just
after stimulus onset, this saturation occurred at much smaller neural
ensembles compared with later on in the trial. As stimulus presenta-
tion proceeded, the functional dependence of (d’)* on ensemble size
became more similar to the form observed in trial-shuffled datasets
(Fig. 3k and Extended Data Fig. 5b, c).

To estimate the sensitivity of the ensemble neural code to the hypo-
thetical loss of one neuron, we determined the number of neurons of
which theloss would resultina10% decrementin the totalinformation
encoded by the cell population. We rescaled the result to express the
information loss per cell removed (Extended Data Fig. 5h).

Determinations of the similarity between pairs of vector subspaces
To assess the similarity between two K-dimensional subspaces
(Extended Data Figs. 3e and 5j), we first calculated the K x K matrix
S=U"V,where Uand Vare N x K matrices of which K orthonormal col-
umns form a basis for each subspace. We then performed a singular
value decomposition of Sand determined the subspace similarity asthe
mean of the K'singular values. This calculation yields zero for orthogo-
nal subspaces and one for identical subspaces. As each singular valueis
the cosine of a canonical angle between the two subspaces, this meas-
ure is equivalent to the mean of the cosines of the K canonical angles.

Assessments of how day-to-day drifts in neural encoding relate
to trial-to-trial activity fluctuations
To assess how the day-to-day variations in stimulus-evoked neural
responses related to the trial-to-trial variations in these responses
within individual imaging sessions, we first rescaled each neuron’s
activity trace to have zero mean and unit variance on each day of the
experiment. Using these traces, we calculated the noise covariance
matrix of the stimulus-evoked neural responses on each day, and we
averaged these matrices acrossthe two trial types. Toidentify the prin-
ciple directions of the trial-to-trial activity fluctuations on each day,
we performed an eigenvector decomposition of each of the averaged
covariance matrices.

To examine how the day-to-day variations in the neural representa-
tionsrelated to the trial-to-trial activity fluctuations, we projected the



changesbetween successive daysin the meanneural ensembleresponse
oneachtrial type onto the eigenvectors of the noise covariance matrix
for the first day in each pair of consecutive days (we obtained similar
resultsif we alternatively chose the eigenvectors from the second day
of each pair). We averaged the results over both stimuli and all pairs
of consecutive days. As control, we performed the same analysis with
trial-shuffled datasets, in which the noise covariance matrix was ren-
deredisotropic by permutingthe activity traces of each cell across trials
ofthe same stimulus type. The results showed that day-to-day driftsin
the neural ensemble representations of the stimuli were significantly
aligned with the principal directions of the trial-to-trial variations within
individual days (Fig. 3fand Extended Data Fig. 4a). We obtained similar
results when we projected the day-to-day changes in the visual stimulus
tuning curve onto the eigenvectors of the within-day, noise covari-
ance matrix. A theoretical explanation for how this observation can
enable optimal decoders to be robust across days, and an explanation
of how this alignment between within-day fluctuations and across-day
changesinmean neural ensemble responses can arise mechanistically
in a simple network model without any fine tuning are provided in
the Supplementary Information.

Effects of correlated noise in a two-layer feedforward network
model of the visual cortex

Toguide our examinations of how redundantinformation coding across
different neural ensembles is related to correlated fluctuationsinactiv-
ity thatreflect neuronal connectivity patterns (Fig. 30), we analysed a
two-layer feedforward network model, also discussed elsewhere?. This
network comprises aninput layer of ‘sensory neurons’ and an output
layer of ‘cortical neurons’, of which the activity levels are denoted by
the vectorsrands, respectively, and related by the expression

r= F(WS +£in) +£out.

Here €M and € are zero-mean Gaussian-distributed additive noise
vectors that represent the stochastic components of the input and
output activity levels, W denotes the connection matrix between the
two layers, and Fis anonlinear transfer function relating the net input
and outputlevels of activity. We approximate the response to a specific
stimulus A via a Taylor expansion:

rA — F(WSA) + F’(WSA)Tfm"' fout,

where the prime symbol denotes the first derivative. As both £" and
€ have zero means, the mean output response to this specific stimu-
lusis g = F(Ws") where s is the mean activity evoked in the sensory
layer by stimulus A. Under these assumptions, the noise covariance
matrix between neuronsin the cortical layer is:

zA — Gszin WTGA+ Zout’

where G"is a diagonal matrix of which the elements denote the linear
gain of each neuron around stimulus A, as determined from the func-
tion F’. Ifallneurons operate at similar gains (assumed to be 1 here for
simplicity), andif the noise terms €"and €& are uncorrelated between
neurons, independent of the stimulus, and have variances, 6%, and ¢%,,,,
that are uniform for all cells in each layer, then:

L=02WW"+02,J, 4)

where/is theidentity matrix. Tocompute the (d")?value for distinguish-
ingbetween two distinct stimuli using an optimallinear decoder of activ-
ity inthe output layer, the application of equation (1) above leads to:

(d)?=Ap" s A= AS"WT (02 WWT + 02,0) W As. 5)

Our previous analysis of this model® shows that, if we replace Win
equation (5) by its singular value decomposition, the minimum number
of neurons, N§ 5, needed on average to extract >50% of the encoded
information along each left-singular vector, u,, of Wis determined by:
2
ozut , (6)

q Cin

a=10
-2

where daz is the square of the ath largest singular value of W, divided
by the total number of cortical neurons. From equation (4) we can also
estimate the average value of the diagonal (%;) and non-diagonal (%)
elements of the noise covariance matrix:

Y= Ok Wy, W) + 00y (7)

Zij = 0i2n<wi' Wj> (8)

1 . .pe .
where (w, W)= y¥, wlw; isamean amplification factor, averaged

over the Nsingular vectors of W (where Nis the number of cells in the
output layer) and (w;, w;)) = m Yis w,-ij is the mean similarity
between the receptive fields of cells in the output layer.

Dividing equation (7) by equation (8) yields:

2

o pI%
S = (W, W)= — (W, W), )

Oin ij

Finally, substituting equation (9) into equation (6) yields:

« _ W, W)
05~ -2
dy

T W W)
zij daz

(10)

Equation (10) shows how the number of cells in the output layer
needed to extract half-maximal information is related to the basic
structure of the connectivity matrix, W (Fig. 30).

Empirical analyses of redundancy and noise covariance in
cortical ensembles

To study whether equation (10) held empirically in our datasets, we
computed the ratio, ¥;/ ¥, from our recordings of cortical neurons
and studied its relationship to N, s. In equation (10), N§ s is related to
anindividual eigenvector of the connectivity matrix, W. The value of
N, sforanentire neural ensemble will be primarily determined by those
eigenvectors of the connectivity matrix that make significant contribu-
tions to stimulus coding. As we do not have direct access to W, the
connectivity matrix of the mammalian brain, to test equation (10) we
estimated the noise properties of neurons that contributed signifi-
cantly to stimulus coding.

To estimate 2, we computed the noise covariance for each stimulus
separately and then averaged the results for both stimuli (Go and
No-Go). We estimated N, ; during the stimulus interval separately for
each time bin (Fig. 31; see above for detailed methods). In our experi-
ment, the N, s values and noise correlation coefficients varied over time
during the stimulus presentation period. Equation (10) suggests that
this time dependence should be constrained such that thereisalinear
relationship between Ny sand (Z;/ X)) atall time points. Totest this, for
each time bin, we plotted the empirically determined values of Ny
(Fig. 31) against the ratio, X;/Z;, computed across the set of all cells
that significantly encoded the stimulus type (see above for how we
identified these neurons). The results were strikingly consistent with
the linear relationship predicted by equation (10) (Fig. 30). The slope
of the linear relationship was similar for all of the mice in the experi-
ment, which presumably reflects conserved properties of the ana-
tomical neural connectivity within the mouse visual pathways, such



Article

as the degree of overlap in the receptive fields of nearby cells and the
amplification factors across different stages of visual processing.

Analysis of canonical noise correlations

To examine the structure of correlated activity fluctuations across
different cortical areas and their relationships to the representation
of information, we used CCA® to study the co-variations of activity
fluctuations within pairs of brain areas. For each trial type, we computed
the trial-by-trial fluctuations in stimulus-evoked activity by subtracting
from each fluorescence Ca?* trace the mean Ca*" activity trace, aver-
aged over all trials. We concatenated the traces representing these
fluctuations across trials that the mouse performed correctly. For a
given pair of brain areas, we represented the dynamics inthe two areas
with matrices, Xand Y. These matrices were N, x N, and N, x N, in size,
where N, was the total number of time points after the concatenation,
and N, and N, were the numbers of cells detected in each brain area.
We standardized these zero-mean matrices of fluctuations Xand Y by
scaling each matrix column to have unit variance.

Following the standard approach in CCA, we identified two sets of
loading vectors, {w;} and {v;}, termed here as CCA modes, each of which
wasanactivity mode within one of the two neural ensembles (thatis, with
N;and N, elements, respectively). Theindexi € {1, 2, 3, ..., minimum(N,,
N,)} denoted the individual modes, whichwe determined such that the
projections of the neural activity fluctuations, Xand ¥, ontow;and v;,
were maximally correlated between the two ensembles,

Maximize,, , (XW)"(Y'v), (11)
subject to the normalization constraint, w;X"Xw,;=v] YTY v.=1. Given
this normalization condition, the quantity (Xw,-)T- (Yv;) equals the
correlation coefficient of the activity modes, Y'v;and Xw;,, in the two
different brain areas. After finding the first CCA mode (i = 1), we identi-
fied successive modesin aniterative manner. Specifically, for all previ-
ouslyidentified CCAmodes we removed the CCA fluctuations, Y v;and
Xw, respectively, from Xand Y. We applied equation (11) to the residu-
alsand therebyidentified a set of orthonormal fluctuation modes with
correlation coefficient values that progressively declined with the
index, i. To identify the maxima specified by equation (11), we first
randomly initialized the vectors w;and v; while constraining them to
have unity length. We then found values of w; and v, that maximized
the objective function in equation (11) by performing an alternating
optimization®.

Tocreate training and validation datasets, we randomly divided the
full datasetsinto two subsets with equal numbers of trials, with all the
data from each trial used only in one of the two subsets. We used the
first subset to find the top 20 CCA modes for all pairs of cortical areas.
We used the second subset of trials to determine the inter-area corre-
lation coefficients of the fluctuations in each of the CCA modes; this
revealed significant correlated fluctuationsin the test dataset with no
signs of overfitting (Extended Data Fig. 7d). We also performed a CCA
of trial-shuffled datasets. By comparing the correlation coefficients
for CCA fluctuations in the real data with those observed across 100
different trial-shuffled datasets, we determined that the correlation
coefficientsin the real data were significantly larger than expected by
chance (P< 0.01; permutation test; n=710-1,340 trials; 525 cells per
brain area on average, range: 31-2,297 cells; Extended Data Fig. 7a).

We also measured the amplitude of canonical correlations separately
for Go and No-Go trials and found that, on average, the correlation
coefficients had similar values for the two stimulus types (Extended
Data Fig. 7d). Thus, for most of our analysis, to simplify visualization
of the data, we combined the sets of mean-subtracted activity traces
for the two stimuli and identified a single set of CCA modes between
each pair of brain areas, independent of the stimulus type.

Asacontrol analysis to ensure that theinter-area activity fluctuations
that we had identified had not artifactually arisen from slight errorsin

determining the boundaries between brain areas, we performed CCA
analysis on a control dataset in which we excluded all cells located
<60 pumtothe other brainareaunder consideration. These exclusions
did not notably modify the amplitudes of correlated fluctuations or
other aspects of our findings (Extended Data Fig. 7e).

To assess how the CCA correlation coefficients varied as a function
of time relative to stimulus onset, for each pair of brain areas we pro-
jected the neural activity at different time bins onto the CCA modes
and computed the correlation coefficient using the validation dataset;
this yielded different values of the correlation coefficients for each
time bin (Extended Data Fig. 8a). Across most of the visual stimulation
period, the CCA fluctuations exhibited significantly greater correla-
tion coefficients in the real than in trial-shuffled datasets (P< 0.01,
permutation test, n = 710-1,340 trials 525 cells per brain area on aver-
age;range, 31-2297 cells).

To examine how the brain’s fluctuations modes might change at the
onset of visual stimulation, we first used CCA to identify a distinct set
of CCAmodes of the neural ensemble dynamics duringITlIs, within the
period [-2 s, O s] relative to stimulus onset. We then compared these
CCA modes to those found within the visual stimulus period [0 s, 2 s].
To do this, once we had identified CCA modes during visual stimu-
lus presentation using training datasets, we extended the temporal
range of the validation datasets to include the [-0.5 s, O s] interval.
Conversely, once we had identified CCA modes during the ITIs, we
extended the temporal range of the validation datasets to include the
[0s,0.5s]interval. We found that the correlation coefficient values
of the ITICCA modes declined after stimulus presentation, whereas
those for the stimulus period CCA modes sharply increased shortly
after stimulus onset (Extended Data Fig. 8a). For each CCA mode
index, i, we also compared the directions of the mode vectors within
the neural population activity vector space for the two different sets
of CCA results by determining the cosines of the angles between the
ith CCA mode vectors from before versus after visual stimulus onset
(Extended Data Fig. 8b).

For comparison, we trained CCA modes using the datafrom the entire
[-2s,2 s]interval, subsampled so that the training datasets were equally
sized to those used to train the ITl and stimulus CCA modes from the
[-2s,0s]and[0s,2 s]intervals, respectively. At stimulus onset, many of
these CCA modes exhibited either arise oradeclinein their canonical
correlation coefficients, consistent with the results obtained when we
trained CCAmodes separately forthe[-25s,0 s]and [0 s, 2 s]intervals.
However, the values of the canonical correlation coefficients for the
modes trained forthe[-2s,2 s]interval were generally less than those
of the CCAmodes trained separately for the stimulus presentation and
ITI presentations, suggesting that the implicit assumption in CCA of
statistical stationarity does not hold at stimulus onset and that there
isabona fide transition in the noise correlation structure of cortical
activity at stimulus onset.

Simulations of multi-area neural fluctuations

Tostudy how neural connectivity can give rise to CCAmodes that share
information between brain areas, we modelled the linear network sche-
matizedin Extended DataFig. 9f with N, =500 cellsin each of one ‘early
visual area’and three ‘cortical areas’ (termed A, Band C). Neural activity
inthe early visual area, E, were set by

E=0S+ Wy (uM) +&F,

where S and M were 500-dimensional unit vectors (with fixed values
in each simulation) representing input patterns of neural ensemble
activity encoding the stimulus and the mouse’s response, respectively,
andvand uwerebinary variables with values of either -1or1that rep-
resented the two stimulus and response conditions. Wy was a linear
low-rank projection matrix from the space of the decision variable to
that of the neural activity levels; we systematically varied the rank, k,



of this matrix from 1-10 across multiple runs of the simulation. Spe-
cifically, Wy was the outer product of two N, x k matrices in which
all of the elements were randomly and independently chosen from a
zero-mean unit variance Gaussian distribution, and each column of
these two matrices was normalized to have an L2-norm of 1. & was an
additive noise vector in which the individual elements were indepen-
dently drawn from identical zero-mean Gaussian distributions with
variance =1/N.. The neural dynamicsin areas A, B and C differed in
that, instead of directly receiving stimulus information, they received
itindirectly viaalow-ranklinear projection from area £E. For example,
activity levelsin area A were set by

A=W, E+ W, (uM) + &4,

where W, and W,,, are linear low-rank projection matrices; analo-
gous equations governed the dynamics for areas B and C. As with &,
the elements of the additive noise terms, &, € and € were indepen-
dently drawn from identical zero-mean Gaussian distributions with
variance = 1/N_.. We systematically varied the ranks of the matrices Wy,
Wear Worr Wes, Wos, Wec and Wy to have values between 1and 10; for
each of the 10 different values of k, we repeated the simulations 25
times with different sets of randomly chosen matrix elements and
different randomly chosen values for S and M. We simulated each of
the 250 models for 20,000 trials; on each trial, we chose the stimulus
and decision variables, u and v, randomly and independently of each
other. We used the methods described above to find the CCA modes
of each model (Extended Data Fig. 9g-i).

Simulations of small-world networks

AsshowninExtended DataFig. 9f, g, the global transmission of acom-
mon decision signal to multiple cortical areas can produce a global CCA
mode that is shared among all pairs of cortical areas, similar to what
we found in the real neural recordings. To examine whether a global
CCAmodecanalsoariseinthe absence of aglobally transmitted signal,
we modelled networks with 11 brain areas that were interconnected
according to a small-world connectivity rule®, with unidirectional
connections®***% (Extended Data Fig. 9b).

We simulated 30 different networks with varying degrees of intercon-
nectivity and varying levels of randomness and regularity in the pattern
of connections. For each network, we set the graph of connections by
arrangingthe 11brain areasin aring formation. We then created unidi-
rectional projections to each brain areafromits Knearest neighbours
onthering (thatis, from K/2 neighbouring areas onboth sides of each
brainarea). Tointroduce randomness into the connectivity pattern, the
brainareas sending each of these unidirectional projections were then
randomly re-assigned with probability, P, to adifferent brain area that
was randomly selected with uniform probability 1/(11 - K) from among
those areas that had originally lacked such a projection.

Within each area, there were 500 neurons, of which the activity lev-
elswere alinear function of the neural activity in the brain areas from
which they received inputs:

Narea
X0 = a0+ £ D W),

Here X"(¢) is a vector of 500 elements that represent the activity of
the 500 cells in the nth brain area at time ¢. £'(¢) is an additive noise
term for the nth area, in which the individual elements at time ¢t were
independently drawn fromidentical zero-mean Gaussian distributions
with avariance of 4 x10™*. W™" is a 500-rank projection matrix from
areamto area n, in which all the elements were chosen randomly and
independently from a zero-mean unit variance Gaussian distribution;
all of the columns of W™" were normalized to have an L2 norm of 1.
a,.=lifand onlyif there was an edge from node m to node nin the
small-world graph; otherwisea,, ,= 0. The parameters a and S were gain

factors; their relative amplitudes determined the degree of coupling
between areas.

In general, 8 <1, because increasing the value of ftoo close to1can
cause thewhole network to enter aglobal oscillation mode with a period
of2cycles. With furtherincreases of 5 - 1, the network becomes unsta-
ble. We therefore selected S so as to provide strong coupling between
brainareas while avoiding the fast global oscillatory mode. We simulated
this linear system for all possible combinations of K € {2, 4, 6, 8,10}
and Pe{0,0.2,0.4,0.6,0.8, 1}. To reproduce CCA modes with similar
correlation coefficients to those we had observed in the real cortical
recordings, weseta=0.01and f=0.9.For eachsetof Kand Pvalues, we
initialized the neural activity levels, X"(¢), in the model with zero-mean
Gaussian noise with variance =4 x 10"®and ran the simulation for 50,000
time points. To avoid effects arising from initial transients, we omitted
from all analyses the data from the first 500 time steps.

Data and statistical analyses

We performed all dataand statistical analyses using MATLAB (version
R2019a; MathWorks). All statistical tests were two-sided, except for
permutation tests, which were one-sided. All signed-rank tests were
Wilcoxon signed-rank tests.

Computational simulations
We performed all simulations using MATLAB (version R2019a; Math-
Works).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data supporting the findings of this study are available from the
corresponding authors on reasonable request.

Code availability

We used open source software routines forimage registration® (http://
bigwww.epfl.ch/thevenaz/turboreg/) and PLS analysis (https://www.
mathworks.com/matlabcentral/fileexchange/18760-partial-least-squar
es-and-discriminant-analysis). Software code for extracting individual
neurons and their calcium activity traces from calcium videos by using
principal component and then independent component analyses*® is
available online for free (https://www.mathworks.com/matlabcentral/
fileexchange/25405-emukamel-cellsort), although, for convenience, we
used acommercial version of these routines (Mosaic software, v.0.99.17,
Inscopix). We used MATLAB (v.2019a) to write all other analytical rou-
tines. The primary software code used to support the findings of the
studyisavailable at Zenodo (https://doi.org/10.5281/zenod0.6314932).
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Extended DataFig.1|Long-termimaging and computational analysis of
neural Ca** dynamics across multiple cortical areas duringavisual
discrimination task. (a) Schematic of the algorithmic pipeline used for video
preprocessing and cell extraction, asimplemented using cluster computing.
Pre-processing (steps shownin green): For each movie of Ca** activity, we
performed animageregistration across all frames of the movie to correct for
small displacements of the brain. We removed background noise and neuropil
Ca* activity by applying a spatial Gaussian high-pass filter (0 =80 um) and
computed amovie of therelative changesin fluorescence (AF(¢t)/F,). We then
aligned and concatenated all the AF(¢)/F, movies for each individual mouse,
acrossallimaging sessions. Cell extraction (steps shown inyellow): We
divided each concatenated movieinto 16 spatial tiles and then extracted
individual cells within each tile by successively applying principal component
andindependent component analyses (PCA/ICA algorithm)*® to all tiles in
parallelusing the Stanford Sherlock computing cluster (using up to 320 cores
and -2 TB of memory for each concatenated movie). Ca* eventdetection
(stepsshownin cyan): We converted the AF(¢t)/F, traces for each neuron to
traces expressing the time-dependent fluorescence changes asaz-score, z(¢),
relative to the s.d. of the baseline fluctuations in each cell’s fluorescence trace
(computed separately for eachimaging session). We detected Ca* events by
identifying Ca* transients that attained a peak fluorescence value of z(t) >4
s.d.,and we assigned the cell as being ‘active’ within the interval between the
initial threshold crossing and the time at which the Ca*" eventattained its peak
fluorescence (Methods). (b) Left: Amaximum projectionimage over an entire
concatenated set of Ca** movies from an example mouse. Red lines mark the 4
x4 set of tiles that we processed in parallel during cell extraction. Scale bar:
1mm. Middle:Magnified view of the areaenclosed in orange in the left panel.
Scalebar: 0.1 mm. Right: Z-scored traces (coloured traces) of fluorescence Ca**
activity for 10 example neuronsin the middle panel marked with colour-
corresponding boundaries. Raster traces show the binarized patterns of
activity for eachcell. (c) Most detected cellswere activein all recording
sessions, asillustrated viaa map, computed for one example mouse, in which
eachdetected cellismarked with a colour-code indicating the number of days

inwhichitwas detected as active (Methods). Scale bar: 1mm. (d) Histograms of
thenumber of days that each cell was detected as active for 6 different mice.
Errorbarsares.d. estimated as countingerrors. (e) Vertical and horizontal
retinotopic maps of visual cortex inan example mouse (Methods). After
identifyingborders of areaVldetermined by retinotopic mapping studies in
eachmouse, we aligned these borders with thoseinthe Allen Brain
Observatory map of the mouse cortex and thereby inferred the locations of
otherbrainareas. (f) Histogram of the mean Ca* event rate for each 0f 21,570
cortical neurons (N=6 mice). Error barsares.d. estimated as counting errors.
(g) Mean probability of licking within individual time bins (0.1s duration) over
thetime course of atrial, averaged over all trials and trained mice, for Go
(green) and No-Go (red) trials. Shaded areas denote s.e.m. over N= 6 mice.
After micelearned to discriminate between Go and No-Go visual stimuli, we
trained them to withhold licking behaviour during the stimulus presentation,
[05s,2s],and delay, [2s,2.55s], intervals and torespond only during the
responseinterval,[2.55s,5.5s] (Fig.1and Methods). Trained mice occasionally
licked before the responseinterval; we discarded these trials from our
analysestoallowinferences regarding stimulus encoding, decision-making,
and motor preparationin the absence of overtlicking responses. (h) The mean
behavioral performance of all mice on Go (cyan) and No-Go (grey) trialsin
which the mouse did (right) or did not exhibit locomotor behaviour (left)
(Methods). Individual data points denote values from individual mice. (i, j)

For everyindividual cell (blue data points), the plots show the mean signal-to-
noise ratio (SNR) of Ca®* activity, i, or the mean occurrence rate of Ca**
transient events per time bin (0.1sduration),j, in the first half of eachimaging
session versus thatin the second half of the same session. From linear
regression, the mean SNR and Ca* event rate in the second half of each session
were 96 +2% (N =6 mice)and 99 +3 % (N =6 mice), respectively, of their values
inthe first half. (k) Abox and whisker plot of the Ca®* event rate across all cells
imaged for 5daysineach mouse (N=2236-5292 cells). Horizontal lines indicate
median values across all cells, boxes cover the second and third quartiles, and
whiskers extend to1.5times the interquartile distance. Dots show median
values for individual mice.
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Extended DataFig. 2| Cortical neurons exhibit variable coding properties
across timescales from minutes to days. (a) Maps for two example mice,
showing how mean lateral displacements in cells’ centroid positions across
multipleimaging sessions depended on their locationsin the field of view.
Across most of the field of view, mean displacements were <1 pixel,
correspondingto <4 um. To determine these displacements, we first computed
the maximum projectionimage (MPI) of the Ca** video from each session. Using
the MPIfromthe first session as areference, we computationally aligned it to
the MPIfrom each of the other sessions. We then computed the spatial cross-
correlation function between patches of the MPI containing >10 cells from the
firstsession (patch size: 256 pm x 256 pm) and MPIs from each of the other
sessions. For each session other thanthe first, we determined the displacement
ofapatchtobetheargumentofthe cross-correlation function thatyieldedits
maximum value. We averaged these displacements across all sessions after the
first. By examining all possible MPI patches (spaced 64 um apart) in this way, we
created the maps shown. Scale bars:1 mm. (b) Two-dimensional probability
distribution of cells’ daily lateral displacements from their mean position,
averagedacross all days and imaged neurons (21,570 cells) from N= 6 mice
(Methods). About 50% of the time, cells had a displacement of zero pixels from
their mean position; 98.5% of the time these displacements were <1 pixel (4 pm).
(c) Cumulative distribution of cells’mean displacements (averaged over all
sessions) from their mean positions across the entire experiment. Red dashed
lineindicates that 95.4% of cells had amean displacement of <5 pm. (d)
Cumulative distribution of the lateral separations between nearest neighbour
cell pairs.Red dashed lineindicates that only 2% of nearest neighbour cell pairs
were within 5 umofeach other. (e) Among 18,528 cells with significant d’ values
ononeormoresessions forencoding the trial-type in the stimulus period
(P<0.01; permutation test; N=94-354 trials), 41% of these had significant d’
valuesinonly one half-session, split nearly evenly between the first (21%) and
second (20%) half-sessions. Whereas in trial-shuffled data, only 10% of the cells
had this variable coding, a highly significant difference fromthe real data
(P<0.001) indicating that trial-shuffling diluted the temporal concentration of
trialsin which cells had coding responses. Inreal data, 91% of the 18,528 cells
retained significant codingin one or both halves of the full sessions in which
they displayed significant coding (P<0.01; permutation test; 40-175 trials). But
intrial-shuffled data, only 51% of the cells retained this coding in one or both
half-sessions, a highly significant difference from real data (***P<0.001;
permutation test; 94-354 trials), again showing thatin real data cells had
temporally concentrated coding epochs far more than expected by chance. All
s.d.valuesonthe above percentages of cells were estimated as counting errors

and were 0.1-0.4%. (f) Some neurons had coding properties that varied across
days. For 4 example cells (from areas PPC, MV, V1and PPC, from top to bottom),
shownaretraces of the neuron’s fluorescence intensity (z-scored values of
AF/F,)as afunctionof time across 5imaging sessions. Vertical dashed lines
mark transitions between successive sessions. Insets show maximum
projectionimages of the example neurons from each session. Values of d’
denote the fidelity with which one can distinguish the two visual stimuli based
onthebinarized event train of the cell’s Ca* activity (Methods).Infand g, values
ofd’ coloured red are those for which the stimuli cannot be significantly
distinguished, as determined using a permutation test over the set of stimulus
trialsand requiring P<0.01 for significance. (g) Some cells had coding
propertiesthat varied withinthe 1-h sessions. Shown are fluorescence traces
(z-scored values of AF/F,) for 4 cells (fromareasLV,V1,MVand LV, from top to
bottom) as afunction of time across one session. We measured d’ values of
single neurons for distinguishing the two visual stimuli during the firstand
second halves of each sessionbased on their binarized Ca®* event traces.
Neurons thatactively fired across the session exhibited variability in their visual
coding, asdid cellsthat wereactive during only a portion of the imaging session.
Insets: Example Ca®* eventimages show that the same cells wereimaged in the
firstand second halves of each session. (h) Histograms showing the numbers of
daysthat neurons fromeach areasignificantly encoded the visual stimulus-type
(permutation test over the set of stimulus trials; requiring P<0.01for
significance), for all cells that did soin atleast one session (solid bars) and for the
subset of these cells with statistically significant levels of Ca** activity in every
imaging session (hashed bars). (i) Map of neurons from an example mouse, with
each cell’s colour denoting the number of days the cell significantly encoded
thevisual-stimulus type. Cells with different day-to-day reliabilities of stimulus-
encoding wereinterspersed across the field of view. Scale bar:1 mm. (j) Scatter
plotinwhich, for everyindividual cell (blue data points), the d’ value for stimulus
discrimination during the first half of eachimaging sessionis plotted against
thed’ value for the second half of the same session. (k) Scatter plotin which, for
every cell (blue data points), the mean d’ value for stimulus discrimination
(averaged over all sessions) is plotted against the range of d’ values determined
forthe same cell across all sessions. (I) Scatter plotin which, for every cell (blue
data points), the mean difference between the d’ values for stimulus
discrimination determined for the first and second halves of each sessionis
plotted against thes.d. of the d’ values determined for the same cell across all
sessions. Variability in d’ values within a session was highly correlated (r= 0.81)
with variability across sessions, suggesting some neurons have greater intrinsic
variability in the fidelity of stimulus encoding than others.
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Extended DataFig.3|Neural ensemble representations of the visual
stimuliwere invariant over most of the stimulation period. (a) Mean time-
dependentoccurrence rates of Ca* transient events per time bin (0.1s
duration) across differentintervals of the trial-structure (demarcated by
verticalllines) for 24 neurons from 8 cortical areas, averaged across S sessionsin
onemouse on Go (blue traces) and No-Go (black) trials. Shading:s.d. across 415
trialsof each type. (b) For cells that responded significantly to one of the two
stimuli (see Fig.2c), shown are mean percentages of coding cells responding to
the Gostimulusineach of 8areas. The remainder of coding cells responded to
the No-Go stimulus. Error bars: s.d. across N= 6 mice. (c) Procedure for training
cross-validated instantaneous or consensus linear decoders. After
constructing an unbiased dataset with equal numbers of Go and No-Go trials,
we divided the set of trialsinto 3 equal portions, one for dimensionality
reduction, another for decoder training, and the third for decoder testing.
Using the first subset, a partial least squares (PLS) analysis identified alow-
dimensional subspace of the neural ensemble activity that was informative for
stimulus discrimination. Within this subspace, we used the second subset of
trialstotrainaFisherlinear decoder (indicated by the vector Wy ,¢e,)- We used
the third subset to test decoder performance. For training and testing datasets,
we computed the fidelity, d’, with which the stimuli could be distinguished. To
train decoders foridentifying the mouse’s decision, we followed the same
procedures, starting with equal numbers of correctly and incorrectly
performed trials with a given stimulus. (d) We trained consensus decoders
duringthe stimulus, delay, and response intervals of correctly performed
trials. Plots show mean (d’)*values for decoder training (blue) and testing (red)
datasets, versus the number of PLS dimensions used. When constructing each
decoder, we used the number of PLS dimensions that maximized (d’)* for
testing datasets. All plotted (d’)* values are separately normalized for each
mouse to the maximum (¢’)* determined with the testing data. On average, with
>5PLS dimensions decoders overfit the training data, yielding greater (d’)?
values than for testing data. For shuffled datasets, 1or 2 PLS dimensions
yielded maximal (d’)* values (data not shown). Shading: s.d. across N= 6 mice.
(e) Wedetermined the similarity of the subspaces defined by the top 3PLS
dimensions for eachmouse on different days (1-5) or for its across-day,
common decoder (C) (Methods). We used the top 3 dimensions, since these
contain most of the information (d). The matrices show mean similarity values
for all pairs of subspaces, averaged over N = 6 mice, for real (left) and shuffled
(right) datasets. For real datasets, PLS dimensions for common decoders were
highly similar to those for single-day decoders. (f) Optimal linear decoders of
stimulus-type retained a constant formacross stimulus presentation. Plots
show Pearson correlation coefficients, r, between all pairs of instantaneous
decoders (constructed using allimaged neuronsin each mouse), for each time
bin. (g) Dueto the stationarity of the optimal decoders across stimulus

presentation, f, consensus and instantaneous decoders performed nearly
equivalently. Plots show mean (d’)* values for consensus decoders of stimulus-
type versus those for instantaneous decoders, for correctly performed trials.
Each datumshowstestingresults attained by applying each decoder-typeto
datafromone time bin during stimulus presentation. Insome mice, e.g. Mice 5
and 6, the consensus decoder achieved slightly superior performance,
presumably due toits larger training dataset. (h) Similar results to those of f,
computed for different areas and averaged over 6 mice. (i) Similar results to
those of Fig. 3c, computed separately for different areas. (j) To measure the
information captured by trial-type decoders about the stimulus (S) or mouse’s
response (R) inthe stimulus (left), delay (middle) or response (right) periods, we
projected neural activity on all 4 trial-types (Hit, Miss, Correct Rejection, and
False Alarm) onto the common trial-type decoders trained for each period
using correctly performed trials. We then computed (d’)* values using trials in
which either the stimulus or response was held constantbut the other varied.
Information, (d’)?, about the stimulus did not vary significantly between Lick
and No-Lick trials, so we averaged (d’)*values across both stimuliin each plot’s
left column. Response-coding was much stronger on Go trials (see k), soright
columnsonly show (d’)?values from Go trials. Each blue point shows data from
onemouse (meanzs.d., N=100 different subsets of trials, each with equal
numbers of trials of the two types). Red points: averages across mice
(meants.e.m., N =6).During the stimulus period, common decoders nearly
exclusively captured stimulus information, which was 691+315 times greater
(meants.e.m.; N =6 mice) thaninformation captured about the mouse’s
response. Inthe delay period, response information rose. During the response
period, common decoders captured response information that was
comparable or greater to informationabout the stimulus. (k) The mean Fisher
information encoded by neural ensemble activity about the stimulus-type was
independent of the mouse’s response (top), as (d’)* values for consensus
common stimulus decoders trained and tested on ‘No-Lick’ trials were
indistinguishable to those for ‘Lick’ trials (P<0.7; Wilcoxon signed-rank test;
N=6mice).On‘Go’butnot ‘No-Go’ trials, the upcoming response could be
predicted (P<0.01; permutation test; N=40-754 trials) from neural activity
during stimulus presentation (bottom). For each comparison, we constructed
training datasets for the two decoders to have equal numbers of trials, 50% of
eachtype.Blue-shaded points are fromindividual mice; error barsares.d.
(N=100different randomly chosen sets of trials. Red points are means; error
barsares.d. (V=6 mice). (I) Control analysis for Fig. 3c. Across-day common
consensus decoders performed equivalently to single-day consensus decoders
whenthey were trained with equally sized datasets. Here we trained common
decoders by sub-sampling trials from each sessionso the training dataset had
thesame of number of trials as that of the day with the smallest number of trials.
We trained single-day decoders using this same number of trials.
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Extended DataFig. 4 |Neural ensemble representations of the visual
stimuli and the mouse’sresponse were widespread across neocortical
areas. (a) Plots analogous to Fig. 3f for individual mice. Inall 6 mice, day-to-day
changesincoding were correlated with within-day, trial-to-trial fluctuations
(r=0.85,0.66,0.79,0.76,0.83,0.76 and Pwas between 5 x 10 -5 x 107 for
micel-6 for the real datasets, but0.1<r<0.15and 0.12<P<0.92 for trial-
shuffled datasets). (b) We trained consensus common decoders to
discriminate the visual stimulibased on neural activity eitherinindividual
corticalareas oracross the visible cortical regions, during stimulus
presentationon ‘No-Lick’ trials (trials when the mouse withheld licking
responses) and Lick trials (on which the mouse made alicking response). Thus,
decodersfor‘No-Lick’ trials discriminated ‘Correct Rejection’ from ‘Miss’
trials, and decoders for ‘Lick’ trials discriminated ‘Hit’ from ‘False Alarm’ trials.
Bothdecodertypesweretrained on equally sized datasets, with equal numbers
oftrialsofeachtype. We evaluated decoder performance across individual
time bins and then plotted the maximum (d’)*values attained for each mouse
across alltime bins during stimulus presentation (0.5-2 s after stimulus onset).
(d’)*values for stimulus decoding were independent of the mouse’s upcoming
‘Lick’ or ‘No-Lick’ response (P<0.7; Wilcoxon signed-rank test, N= 6 mice).
Across b-g, grey and coloured symbols respectively denote (d’)* values for
individual mice and mean values averaged over N = 6 mice; note that y-axis
scales vary substantially across the graphs. (¢, d) Using the methods of b, we
trained consensus common decoders to discriminate the visual stimuli using
neuralactivity in different cortical areas during the delay (c) and response (d)
periods. Similarly tob, we evaluated decoder performance across individual
time bins and plotted the maximum (d’)*values attained for each mouse across
all time bins during the delay, ¢, or response, d, periods. Whereas (d’)* values for
stimulus decoding during the delay period were independent of the mouse’s
upcoming response (P<0.3; Wilcoxon signed-rank test; N = 6 mice), response
period (d’)* values were significantly greater for ‘Lick’ trials (P<0.03). The latter,
higher values of (d’)* could stem from the divergent neural signals evoked by
receipt of areward or air puff on ‘Hit’ and ‘False Alarm’ trials, respectively. (e-g)
Using methods analogoustothoseinb, we trained consensus decoders of the
mouse’s response on ‘Go’and ‘No-Go’ trials based on neural activity in different
corticalareas during the stimulus (e), delay (f), and response (g) intervals. As in
b-d, we evaluated decoder performance across individual time bins and
constructed plots using the maximum (d”)*values attained for eachmouse
acrossalltimebins during the stimulus (0.5-2 s after stimulus onset), e, delay, f,
orresponseg, periods. Todetermine neural representations of the mouse’s
response during theresponseinterval, g, we used dataacross the full 3-s
responseinterval. Within thisinterval, the mouse received rewards and

aversive air-puffs at variable time points. Thus, a distinct analysis would be
neededtoseparate codingrelatingtoreceipt of the rewarding and aversive
stimuli from that relating to the mouse’s actions. (d’)* values for response
decoding were greater for ‘Go’ trials during stimulus presentation (P<0.03;
Wilcoxonsigned-rank test; N = 6 mice), delay (P<0.06), and response (P< 0.06)
intervals. These higher (d’)*values could reflect signals associated with reward
prediction, motor planning and action on correctly performed ‘Go’ trials. (h-j)
Map of the cortex for the mouse of Fig. 3g-j. Coloured dots mark locations of
cellswiththe greatest contributions to the response decoder score (defined as
cellswith decoder weights deviating >2s.d. from mean values) during stimulus
(h), delay (i), and response (j) intervals. Because the mouse’s response was only
weakly encoded in the neural dynamics on‘No-Go’ trials (see e-g), we created
h-mbased ontheresponse decoders found by analysis of ‘Go’ trials. Cells in
eachbrainareaare coloured differently, following the colour scheme inm.
Scalebars:1mm. (k-m) Meants.e.m. (N =6 mice) fractions of neuronsin each
areathathadresponse decoder weights deviating >2s.d. from mean values,
during the stimulus (k), delay (I), and response (m) intervals. (n) Right, We
measured the information (d’)’ conveyed about reward and punishmentin each
areaby studying the neural activity evoked when the mouse licked. To evaluate
theencoding of punishment, we compared the mean neural ensemble activity
inthefirst 0.5safter licks that were punished with air-puffs versus after licks
thatoccurred during timeout periods and that elicited neither punishment nor
reward. To evaluate reward encoding, we compared the mean neural ensemble
activityinthefirst 0.5 s afterlicks that occurred during timeouts versus after
licks triggering areward. Both punishment and reward were represented to
varying extents across the different areas. Notably, these representations
couldrelate toany aspect of the rewarding or aversive experience, such as the
experience of receiving or blinking in response to an aversive air-puff or
receiving or tasting areward. Left, Asa control, we performed the same
calculations as for the right panel but using neural activity that occurred within
the 0.5sintervalsjust before licks. As expected, during these periods there was
notably lessinformation encoded about upcoming rewards or punishments
thanabout rewards or punishment the mouse hasjustreceived. (0) Agraph of
thes.d. of (d’)*values for each cell (individual data points) across all days of the
study, for every cell with asignificant (P<0.01) d’ value for trial-type encoding
onatleastoneday, asafunctionof the cell’sweightin theacross-day common
decoder.Decoder weights are normalized by the maximum weightineach
mouse. Results show that cells can have stable or variable coding properties,
irrespective of their decoder weights. Nevertheless, coding variability
generally increases for cells with larger weights, asshown by the red line, which
plotsthe means.d.in (d’)?values, averaged over all cells within x-axis bins of 0.1.
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Extended DataFig. 5|See next page for caption.



Article

Extended DataFig. 5|Information-limiting noise correlations and coding
redundancy peaked just after stimulus onset and then declined for therest
of stimulus presentation. (a) The fidelity with which stimulus identity could
bedecoded fromneural ensemble activity saturated for large (>2000)
populations of cells, for real (purple curves) but not trial-shuffled (black
curves) datasets. To study ensembles of each size (x-axis), we randomly chose
100 different subsets of cells from the entire pool of neuronsimaged across all
areas. We then trained and tested optimal linear Fisher decoders using the
neuralactivity within[0.4 s, 0.5 s] after stimulus onset on correctly performed
trials. We quantified decoding performance using (d’)?, whichrelates to the
Fisherinformation the neural dynamics conveyed about the trial-type. Each
curve shows data from one mouse. Whereas (d’)* saturated for large neural
populationsinreal data, this did not occur for trial-shuffled datasets in which
correlated fluctuations were scrambled. Shading:s.d. across all 100 subsets of
cells for each ensemble size. Inset:Magnified view near the graph origin for one
mouse. (b) Using the methods of a, we assessed how well optimal linear
decoders could discriminate Go and No-Go trials. Plots show mean (d’)* values
for thisdiscriminationasafunction of neural ensemble size and for different
time bins, averaged over N = 6 mice. The size of the cell ensemble at which (a’)?
saturated rose substantially with time during stimulus presentation but stayed
relatively constant during the delay and response periods. (d’)* values are
normalized relative to their maximum (saturating) value at each time bin.
Ensemble size values are normalized relative to the total number of cells
recordedin eachmouse. (c) Plots like those of b, for individual mice during
stimulus presentation. Data are shown only for time bins in which (d@’)*values
were significantly greater than for control datasets inwhich the trial-type
labels were randomly shuffled (P<0.01; permutation test; N =710-1340 trials).
(d) Mean#s.e.m. (N = 6 mice) Ca* event rates per time bin (0.1s duration) for all
neurons on correctly performed Go and No-Go trials. These event rates had
nearidentical time dependenciesontrials of the two types, but the temporal
variations were distinct from those of decoder score fluctuations (Fig. 4b) or
correlated fluctuationsin cells’dynamics (panel f). Dashed vertical linesin d-f
demarcate stimulus, delay and response periods of the trial structure. (e) Time
dependence of the mean Fano factor, determined for each mouse by
computing for each cell theratio of the variance in the cell’s Ca*" event rate to
itsmean Ca* eventrate, on correctly performed trials. Shading: s.e.m. values
(N=2236-5292cells). Legend also applies to fand g. (f) Noise correlations
between pairs of cells with similar stimulus tuning rose sharply after stimulus
onset, peaked -0.2 s after stimulus onset, and then decayed to baseline values.
Each coloured trace shows the mean absolute value of noise correlation
coefficients for all pairs of similarly tuned cells across allimaged areas ineach
mouse. (g) Cross-correlation functions between the dynamics of absolute

noise correlations across pairs of cells, showninf, and the Fano factor, shownin
e, asdetermined for each mouse over the 2-s-stimulus period. The graph shows
that changesin pairwise noise correlation coefficients were negatively
correlated with and most predictive of upcoming variations in the Fano factor
withalead time of -200 ms. Shading:s.e.m. values (N=10-20 time bins for each
abscissavalue). (h) Plot of the mean time-dependent rate (blue trace) of Ca**
events in Go-stimulus-tuned neurons on Go trials and No-Go-stimulus-tuned
neurons on No-Gortrials, averaged over both cell-types and N = 6 mice. Also
shownis the mean absolute noise correlation coefficient (red trace) for pairs of
similarly tuned neurons, computed asin ffor the same 6 mice. Notably, changes
innoise correlation coefficient levels peaked sooner after stimulus onset than
Ca® activity rates of tuned cells. After reaching their peak values, noise
correlation coefficients declined back to baseline values by stimulus offset,
whereas Ca?* activity rates did not. These differences make it hard to explain
the dynamics of noise correlation coefficients as resulting simply from
changesinneuralactivity rates. Shading: s.e.m.across 6 mice. (i) Plot showing
the changeininformationencoded by the neural ensemble if one cell were to
becomesilent, assessed usinginstantaneous decoders. Each dot denotes the
result from one time bin. (Asshownincandf, noise correlation coefficients
vary with time following stimulus onset). Results for trial-shuffled data, in
which correlated fluctuations were scrambled, are denoted with crosses and
reveal agreater sensitivity to loss of one neuron. (j) Left, Traces of mean
absolute noise correlation coefficients as a function of time during stimulus
presentation, determined asin ffor cell pairsin primary visual cortex (V1; blue
trace), secondary cortical visual areas (areas LV, MV and PPC; red trace) or non-
visual cortical areas (areas A,S, Mand RSC; black trace). Right, Traces of mean
absolute noise correlation coefficients between pairs of coding neurons
located indifferentbrain areas. The rise in noise correlations for similarly
tuned cellsin visual cortex is greater than that for cells outside visual cortex
(P<0.03; Wilcoxon signed-rank test; N= 6 mice). Shading:s.e.m.acrossN=6
mice. (k) We calculated the covariance in the neurons’ responses on each trial-
type andoneach day. We then averaged the covariance matrices for the two
trial-types and computed the top 3 eigenvectors for each day. Left, A plot
showing the similarity between the pairs of different subspaces (Methods),
eachdefined by the top 3 eigenvectors of the noise covariance matrix on each
day of experimentation. The matrix row and columns labelled ‘C’is for the
noise covariance matrix computed for the set of all trials across all days. Right,
As control, we computed the subspace similarities for trial-shuffled datasetsin
which eachneuron’sresponses were permuted across trials with the same
stimulus. Overall, noise covariance structure in the real data was significantly
similar across days, to adegree much beyond thatinshuffled datasets.
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Extended DataFig. 6 | The discriminability of the two stimulibased on their
evoked neural dynamics fluctuated trial-by-trialin a way that was highly
correlated between cortical areas. (a) Example scatter plot for anindividual
mouseinwhichtheinstantaneous stimulus decoder scores based onthe
activity patterns of cortical area PPCare plotted against those for cortical area
RSC.Each datapointshowsresults for anindividual trial, at 0.5 s after stimulus
onset, for Go trials (blue data points) or No-Go trials (black data points).
Stimulus decoder scores for the two brain areas exhibit positively correlated
trial-to-trial fluctuations. (b) Traces showing the mean time-dependent
correlations of the fluctuationsininstantaneous stimulus decoder scores for 8
different corticalareas and each of the other 7 brain areas within the imaging
field-of-view. For most pairs of brain areas, these correlated noise fluctuations
indecoder scoresattained theirmaximumshortly after stimulus onset and
then gradually decayed. Decoder training and testing was limited in this
analysis to trials that the mice performed correctly. Shading:s.e.m.over N=6
mice. Vertical dashed lines demarcate the stimulus presentation, delay and
responseintervals. (c) Two plots showing examples of stimulus-coding cells
whoseresponses were modulated by the mouse’s response. Each plot shows
the meanrate of Ca** eventsinanindividual neuron, as afunction of time
relative tostimulus onset at ¢ = 0, for the 4 different trial-types. The cell of the
top plotisfromareaMYV, and the cell of the bottom plot is from PPC. Both cells
had P-values of <0.01 for stimulus-coding on Lick and No-Lick trials, and also

Maximum correlation coefficient ( r) of decoder score quctuatlons
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had P<0.01forresponse-coding on GO-trials). We determined P-values
through comparisons to trial-shuffled datasets (1000 different sub-samplings
and random permutations of trials using equal numbers of trials of both
stimulus- or response-types). The separation between the traces for Hitand
Miss trials shows the extent of response-related modulation on trials witha Go
stimulus. Shading: s.e.m. over trials (410 Hit trials, 218 Miss trials, 665 Correct
Rejectiontrials, 100 False Alarm trials). (d) To determineif the elevated
correlated noise fluctuations along the stimulus-coding direction within the
interval[0.25s,0.5s] after stimulus onset (when correlations were at their peak)
reflects choice information relating to the formation of amotor response plan,
we computed for each stimulus-type the proportion of the neural activity
variance along the stimulus-coding direction that co-varied with the mouse’s
upcoming motor response. The results show that only atiny percentage (0.5%
onaverage) of the variations in stimulus-coding canbe explained asreflecting
themouse’s decision or response. Blue-shaded points denote data from
individual mice.Red points are averages across mice. See also Fig. Se. (e) Peak
values of the time-dependent decoder score noise correlations (r), determined
asinb, for all pairs of imaged brain areas for anexample mouse, using either the
datafromeach of five differentimaging sessions, or the aggregated set of data
fromallimaging sessions. Fluctuations of decoder scores were correlated
betweensensory cortical areasduringall recording sessions. The same general
patternof correlations between brain areas was visiblein every session.
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Extended DataFig.7|Canonical correlation noise modes during the visual
stimulation period for 28 different pairs of cortical areas. (a) Multiple
ensembles of neurons from different cortical areas had strongly correlated
noise fluctuations during visual stimulus presentation. By performinga CCA
on cells’mean-subtracted activity traces for each trial-type, we identified
multiple modes of significantly correlated noise modes (P < 0.01; comparisons
ofrealvs. trial-shuffled data using the permutation test; N = 710-1340 trials)
thatwereshared across 28 different pairs of cortical areas (abbreviated asin
Fig.1). Plotsshow mean +s.e.m. (N = 6 mice) correlation coefficients for the
first 20 pairs of CCA noise modes for all pairs of brainareas, as determined from
validation datasets that were held out from the training datasets used to
identify the CCA noise modes (Methods). (b, ¢) Ineach cortical area, -70-90%
of the neurons that contributed substantially to the largest CCA noise mode
were distinct from the cells that contributed to the second-largest mode. A cell
was considered to contribute substantially toa CCA noise mode ifits weightin
the CCAmode population vector was >2s.d. above or below the ensemble
mean. (b) Themean+s.e.m. (N =6 mice) number of cells that contributed
substantially toboth the firstand second CCA noise modesineach brainarea,
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normalized by the total number of cells that contributed substantially to either
ofthese twomodes and averaged over all pairings with the other 7brain areas.
(c) Distributions of the number of simultaneously active neuronsineach time
binofthestimulus presentation period for the largest five CCA noise modes
shared between Vland the other 7 cortical areas. (d) Mean correlation
coefficients (N = 6) for neural activity in the first CCA noise mode shared
between the 28 different pairs of cortical areas, for validation (¢top left) and
training (top right) datasets, and on the set of No-Go (bottom left) and Go
(bottomright) trials. The similarity of the noise correlation coefficients for all 4
subsets of trials suggests that correlated activity exists in these modes
irrespective of the trial-type and that the results are not due to overfitting. (e)
Highly correlated noise fluctuations between cortical areas cannot simply be
explained as resulting from the activity patterns of cellsontheborders
between pairs of cortical areas. We repeated the analysis in (a) for all pairs of
areas, while discarding theactivity traces of cellsin each area closer than 60 pm
totheboundary of the other areaidentified by retinotopic mapping. The plot
shows theresulting mean +s.e.m. (N =6 mice) correlation coefficients for the
CCAnoise mode fluctuations between V1and other cortical areas.
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Extended DataFig. 8 |See next page for caption.
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Extended DataFig. 8| The canonical correlation noise modes before
stimulus onset were distinct from those after stimulus onset, whichwere
task-related. (a) During the inter-trialinterval (ITI), there were significantly
correlated noise fluctuation modes that were shared between cortical areas.
However, these modes were not the same as the shared noise fluctuations that
arose at stimulus onset. The plots show the mean (N =6 mice) time courses of
the correlation coefficients for the first-and second-largest noise modes
shared between 28 different pairs of brain areas (pairs denoted via the graph
titlesand the colourlegend at far right), as found by applying CCA separately to
ITIperiods (-2 <t<0) and visual stimulation periods (2 > ¢ > 0). Dashed traces,
withand withoutopen circles, respectively show the correlation coefficients
forthefirstand second shared noise modes asidentified during ITI periods.
Solid traces, withand without open circles, respectively show the correlation
coefficients for the firstand second share noise modes as identified during
stimulus periods. At stimulus onset (¢ = 0), correlated fluctuations declined
within the CCA noise modes identified during ITI periods, whereas correlated
fluctuations within the modesidentified during the task substantially
increased. (b) CCA noise modes found during stimulus periods differ from
those found during ITI periods, as shown by the cross-correlation coefficients
between the CCA noise modes found for each pair of brainareas before vs. after
stimulus onset. The plots show these cross-correlation coefficient values for
thelargest Smodes for each pair of brain areas. Tocompute these coefficients,
foreach mouse we created 200 different random assignments of half of the
trialsinto atraining set and half of the trials into a validation set. Using 100 of

theserandom assignments, we determined CCA noise modes for the ITI period.

Using the other 100 assignments, we determined CCA noise modes for the task
period. Foreachentryinthe plots, we plotted the mean value of the cross-
correlation coefficient, averaged across all 10,000 pairings of one mode from

thelTlperiod and one fromthe stimulus period, and across 6 different mice.
Within each plot, row labels designate the brain area for which we computed
thecross-correlation coefficient; column labels designate the area with which
therowareawas pairedinthe CCA. (c) As acontrol analysis for the results of (b),
we examined the variability in our estimates of the largest 5 CCA noise modes
during the stimulus period. To do this, we computed for each mouse the
correlation coefficients between the CCA modes determined from 100
different randomassignments of trialsinto training and validation sets. This
showed that most CCA modes are stable during the stimulus presentation
period.Foreachentryinthe plots, we plotted the mean value of the cross-
correlation coefficient, averaged across all 9,900 pairings of two different
mode determinations from the stimulus period, and across 6 different mice.
Within each plot, row labels designate the brain area for which we computed
the cross-correlation coefficient; column labels designate the areawith which
therow areawas pairedinthe CCA. The results show that the relative lack of
stability exhibited in (b) between CCA noise modes before versus after
stimulus onsetis not simply due to the statistical variability in the
determination of CCA noise modes. (d) Ineachimaged brain area, we
performed a principal component analysis (PCA) of the noise fluctuations
around the mean stimulus-evoked responses, averaged over both stimuli. For
eachbrain area, we then computed the correlation coefficients between the
modesidentified by PCA and those identified by CCAwith each of the other 7
brainareas. Theresults show that fluctuation modesidentified by PCA are
highly distinct from those found by CCA, indicating that PCA canbeincapable
of detecting correlated fluctuations between brain areas. (e) Analogous plots
tothosein (d), except that we performed the PCA over the aggregated set of all
brainareas. (f) Plots analogous to those in Fig. 5e, except that results are shown
forall pairs of brain areas, rather than averaged across all pairs of sensory areas.
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Extended DataFig. 9| Computational simulations of network dynamics
show that the global CCA mode likely reflects acommon signal thatis
broadcasttoall theimaged cortical areas. (a) For the real experimental data,
the graphs show the time dependence of theinformation, (d’)?, encoded about
stimulusidentity within CCAmodes2-10ineachbrainarea, plottedasa
function of time relative to stimulus onset. (We omitted the first CCAmode,
which does not convey stimulus information, Fig. 5d, e). To compute (d’)*we
trained consensus decodersbased onthe neural activityineachbrainarea
duringthe stimulus presentation period of correctly performed trials. We then
projected the neural dynamics onto each of the CCAmodes and used the
resulting 9-dimensional activity datato trainand testinstantaneous decoders
ofthe stimulusidentity. The vertical dashed lines indicate the stimulus onset.
(b) Toexplore the patterns of interconnectivity that can give rise to a global
CCAnoise mode, we simulated neural activity within arange of small world
networks and systematically varied the extent and randomness of the inter-
connections between pairs of brainareas (Methods). The schematic shows 3
example smallworld model networks with unidirectional connections between
11brainareas. Each node denotes onebrainareawith 500 neurons. The
parameter Kisthe ‘in-degree’, i.e. the number of projections received by each
brainarea. The parameter Pdetermines the probability that the brain area
sending a projectionis randomly reassigned to anode outside the Knearest
neighboursof therecipientbrain area. The distribution of connection weights
betweenareas was set so as to approximately match the canonical correlation
coefficients observedinthereal cortical recordings (Methods). Awide range of
these models exhibited CCA modes amongall pairs of brainareas that
resembled the patterns of correlated activity fluctuationsin ourinvivo
recordings of neural activity (panel ¢). However, no model had aglobal CCA
mode, as each pair of brainareas generally had aunique set of cofluctuations
distinct from those in other pairs of brain areas (panel d). (c) Canonical
correlation coefficients for the strongest CCA modes between all pairs of 11
areas, plotted for different values of Kand P. Strongly correlated CCA
fluctuations were observed between all pairs of areas in most of the
simulations. (d) Correlation coefficients for the first CCA modes between one

simulated brain areaand each of the other 10 brain areas, plotted asin Fig. 5a.
Evenwhen strongly correlated CCA modes exist between all pairs of areas, as
shownin (c), the neural ensembles comprising these modes are largely unique
and donotestablish aglobal mode—unlikein our actual recordings (Fig. 5a) in
which the first CCA mode was global and independent of the pair of brain areas
chosen for CCA. Theseresults suggest that global CCA modes may be
inconsistent withinformation transmission through a small-world
architecture. (e) The number of cellsin each simulated brain area that had their
first PCAweights >2s.d. away from the mean value. Even though the simulated
smallworld networks lacked a global CCA mode, the first mode identified by
principal components analysis (PCA) was widely distributed across brain areas.
Thus, the existence of distributed PCA modes does notimply the existence of a
global CCAmode. (f,g) Schematic, f, of asimulated neural network (Methods)
inwhichinformationabout the visual stimulusis transmitted viaseparate
channels to different higher-order cortical areas, whereas information about
thesensory decisionis broadcastedin parallel to these higher-order areas. The
strengths of neural connections from the early visual areaand each of the two
higher-order areas were chosen randomly from a Gaussian distribution. The
matrix of neural connections between each pair of brain areas had arank
between1-10.g, Correlation coefficients between CCA modes in simulated
cortical areas. In contrast to small-world connectivity, networksin which a
single source broadcasted acommonsignal to multiple brainareas did havea
global CCAmode, asincortex (Fig. 5a). These results suggest the global CCA
modein cortexreflects the widespread distribution of acommonsignal
conveyinginformation about the mouse’s upcoming response to allimaged
brainareas, rather thanviaseparate inter-area connections. (h, i) Normalized
values of (¢’)* determined for the simulated network of (f) for distinguishing
between the two different stimuli, (h), or decisions, (i), plotted for each of the 10
largest CCAmodes between all pairs of areas receiving input from the Early
Visual Area. Results are shown separately for networks with neural connection
matrices of different ranks. Results are averaged across 25 different networks
with similar architecture. Shading: s.e.m. across the 3 different simulated areas,
AreasA,Band C.Fig.5eshows similar results for the real experimental data.
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