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In Vivo Microendoscopy of the Hippocampus

Robert P.J. Barretto and Mark J. Schnitzer

MATERIALS

Conventional intravital microscopy has generally been limited to superficial brain areas such as the
olfactory bulb, the neocortex, or the cerebellar cortex. In vivo optical microendoscopy uses gradient
refractive index (GRIN) microlenses that can be inserted into tissue to image cells in deeper areas. This
protocol describes in vivo microendoscopy of the mouse hippocampus. The general methodology can
be applied to many deep brain regions and other areas of the body.

Reagents

Equipment

1092

It is essential that you consult the appropriate Material Safety Data Sheets and your institution’s Environmental
Health and Safety Office for proper handling of equipment and hazardous materials used in this protocol.

Agarose, Type III-A (Sigma-Aldrich)

Analgesic (e.g., buprenorphine)

Anti-inflammatory (e.g., carprofen, dexamethasone) (optional; see Step 10)
Artificial cerebrospinal fluid (ACSF; e.g., from Harvard Apparatus)

Dental acrylic (e.g., Ortho-Jet, Lang Dental Manufacturing Co., Inc.)

Ethanol (70%)

Local anesthetic (e.g., 1% lidocaine) as needed (see Step 13)

Ophthalmic ointment (e.g., Puralube Vet Ointment, PharmaDerm/Nycomed US)
Physiologic saline or lactated Ringer’s solution (e.g., from Electron Microscopy Sciences)
Skin disinfectant (e.g., betadine, Baxter)
Tissue adhesive (e.g., Vetbond, 3 M)

Balance (for weighing animals; e.g., Mettler Toledo International, Inc.)
Capillary tubing (e.g., thin-walled glass 1.0-2.5-mm inner diameter, Vitrocom, Inc.)
Cold light source (e.g., KL 1500, SCHOTT North America, Inc.)

Connection bar (metal) and adaptors

Adapted from Imaging: A Laboratory Manual (ed. Yuste). CSHL Press, Cold Spring Harbor, NY, USA, 2010.
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Containers to store guide tubes (e.g., sterile culture dishes)
Cotton swabs
Coverslips (#0 thickness; e.g., from Electron Microscopy Sciences)
Curing light (e.g., COLTOLUX 75, Coltene Whaledent)
DC temperature regulation system (e.g., FHC Inc. 40-90-8; 40-90-5; 40-90-2-07)
Diamond-scribing tool (e.g., from Electron Microscopy Sciences)
Gel foam (optional; see Step 18)
Glass bead sterilizer (e.g., model BS-500, Dent-EQ)
Gloves
Heating blanket
Imaging setup:
* Microscope that has infinity optics and that has been adapted for in vivo imaging (e.g.,
Ultima IV, Prairie Technologies, Inc.)
* Microendoscope probe

* Microscope objectives for optical coupling to the microendoscope probe

For a detailed description of the components, see In Vivo Optical Microendoscopy for Imaging Cells Lying
Deep within Live Tissue (Barretto and Schnitzer 2012). Parameters for one- and two-photon imaging are
outlined in Step 30.

Instruments/surgical tools, aseptic (e.g., from Fine Science Tools)

Laboratory animal anesthesia system (e.g., VetEquip Inc. 901806) with the following:

* Anesthetic gas (e.g., isoflurane, Southmedic, Inc.)
* Carrier gas tank (e.g., medigrade oxygen from Praxair)

* Waste anesthetic gas system (recommended; e.g., VetEquip Inc. item 933101)

Alternatively, use an interperitoneal injection of ketamine (75 mg/kg) and xylazine (15 mg/kg) to anes-
thetize the animal.

Lens paper

Microdrill (e.g., Osada, Inc. EXL-M40)

Microwave, standard (for agarose gel preparation)

Mounting post (custom-made; aluminum 15 X 3 X 2-mm bar with 2.7-mm through hole on end)
Mounting-post holder (custom-made; aluminum bar with M2 tapped hole)

Needles (30-, 29-, 27-gauge)

Optical adhesive (e.g., NOA 81; Norland Products, Inc.)

Sandpaper, fine-500 grit (e.g., 3 M) or glass polisher (e.g., ULTRAPOL, ULTRA TEC Manufacturing,
Inc.)

Shaver

Sonicator (e.g., Model 1510, Branson Ultrasonics Corp.)
Stereomicroscope (e.g., MZ12.5, Leica)

Stereotaxic apparatus (custom-made)

Surgical eye spears (e.g., 1556455, Henry Schein Medical)
Tape (flexible) or adhesive dressing

Waste liquid suction line (custom-made)
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METHOD

Glass Guide Tube Construction (~25 min)

An optically transparent guide tube (Fig. 1B) is often used to assist in delivering the microendoscope to the tissue of
interest. Because the tube is sealed at the tip with a small cover glass that permits optical but not physical access to the
tissue, microendoscopes can be quickly delivered and can be interchanged with minimal mechanical disturbance to
the field of view under inspection.

1. Choose a thin-walled capillary glass of appropriate diameter. Typical inner diameters safely
exceed the microendoscope diameter by 10%-15%.

2. Prepare the guide tube as follows:
i. Cut the thin-walled capillary glass to the desired length.
ii. Use a microdrill to uniformly thin the circumference of the glass at the location of the cut.
iii. Snap the glass at the thinned portion, and coarsely smooth with the microdrill or sandpaper.

3. Polish one end of the guide tube with a fiber-optic polisher or a fine grit sandpaper. Inspect the
guide tube end under a stereomicroscope, and ensure flatness. Repolish as necessary.
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FIGURE 1. Methodologies for in vivo optical microendoscopy. (A) Optical schematic of an upright microscope mod-
ified to permit both one- and two-photon fluorescence microendoscopy. For two-photon imaging, the beam from an
ultrashort-pulsed infrared (IR) Ti:sapphire laser is scanned within the focal plane of the microscope objective. By
adjusting the axial separation between the objective and the microendoscope (red arrow of the dual-focus mechanism;
see also C), this focal plane of the microscope objective is also set to the microendoscope’s back focal plane. Another
focal adjustment (blue arrows of the dual mechanism) is used to lower the objective and the microendoscope in tandem
toward the animal. For one-photon imaging, a mercury (Hg) arc lamp provides illumination. In both imaging modes,
fluorescence emissions route back through the microendoscope and to either a camera or a photomultiplier tube (PMT)
for one- or two-photon imaging, respectively. (B) Photographs of the tips of a 0.5-mm-diameter microendoscope of
doublet design (top) and a 0.8-mm-outer-diameter glass capillary guide tube (bottom) into which this microendoscope
can be inserted. The relay of the microendoscope is coated black. A glass coverslip is attached to the tip of the guide
tube. The guide tube facilitates the rapid exchange of microendoscopes without perturbation to the underlying tissue.
Scale bar, T mm. (C) The microscope objective and the microendoscope probe are mounted on a pair of cascaded
focusing actuators that provide dual-focus capability. This allows the objective to be moved either alone (red arrow) or
together with the microendoscope (blue arrow). The microendoscope can also be swung out of the optical axis (green
arrow) to permit conventional microscopy. (D) Optical ray diagrams for sample microendoscopes of the singlet GRIN
(top left), compound plano-convex and GRIN (top right), and GRIN doublet (bottom) types. Scale bar, T mm.
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. Cut circular pieces of #0-thickness cover glass with diameters matching the outer diameter of

the guide tube. Using a diamond scribe, score circular patterns onto the cover glass, and break
with the forceps.

Tolerances for the cover-glass dimensions are set by the inner and the outer diameters of the guide tube.

. Clean all glass pieces by sonication while they are immersed in the cleanser, and store in ethanol

until assembly. In subsequent steps, use gloves, and work in a dust-free area.

Apply a thin layer of ultraviolet-curing optical adhesive to the polished end of the guide tube.
Using a high-magnification stereomicroscope, orient the guide tube toward the objective, and
use a fine 30-gauge needle to apply the adhesive onto the guide tube.

Attach the circular coverslips to the guide tube. Use forceps to hold the cover glass, and gently
drop the coverslip onto the guide tube. Ensure that glue does not enter the central area of the
guide tube and that an epoxy seal is formed around the entire circumference of the guide tube.
Set the epoxy using an ultraviolet light source.

Store guide tubes in clean containers until use (e.g., sterile culture dishes). If possible, allow
at least 12 h for the optical epoxy to cure before use. Rinse with saline solution before
implantation.

The following animal procedures are outlined for the examination of the dorsal hippocampus in adult mice but are
applicable to other regions. All procedures were approved by the Stanford Administrative Panel on Laboratory Animal
Care (APLAC). Consultation with those overseeing institutional guidelines for animal surgery care and anesthesia is
recommended.

9.

10.

11.

12.

13.

14.

15.

16.

Deeply anesthetize mice with isoflurane gas (2.0%-2.5%; mixed with 2-L/min oxygen) or
interperitoneal injection of ketamine (75 mg/kg) and xylazine (15 mg/kg). Assess depth of
anesthesia by monitoring toe pinch withdrawal, eyelid reflex, and respiration rate.

(Optional) Administer dexamethasone (2-mg/kg intramuscular) and carprofen (5-mg/kg sub-
cutaneous) to minimize tissue swelling and inflammation.

Secure the animal in a stereotaxic frame. Maintain body temperature at 37°C with a heating
blanket. Apply ophthalmic ointment to the eyes.

Trim or shave the fur from the top of the head, and disinfect the exposed skin with alternating
washes of 70% ethanol and betadine.

The use of a bead sterilizer to disinfect surgical instruments is recommended.

Expose the cranium in the vicinity dorsal to the brain structure of interest. Remove the
periosteum using a probe or a scalpel, and rinse with 0.9% saline solution. After rinsing, use
a cotton swab to dry the exposed skull.

Subcutaneous lidocaine or other local anesthetic may be administered before exposing the cranium, as
necessary.

Apply a thin layer of cyanoacrylate tissue adhesive (e.g., Vetbond) to the regions of exposed
skull outside of the expected craniotomy site. Use a fine applicator (e.g., hypodermic needle) to

spread the cyanoacrylate over the boundaries of the exposed cranium to seal the skin cut sites.
Allow the cyanoacrylate to dry for 5 min.

Drill a round craniotomy centered over the stereotaxic coordinates of interest (e.g., 2.0-mm
posterior and 2.0-mm lateral to the bregma in the hippocampus). Remove the dura with
forceps.

A trephine is helpful in marking craniotomy dimensions matched to the microendoscope diameter.
Perform blunt dissection and aspiration to gradually remove a cylindrical column of neocor-

tical brain tissue with a 27-gauge blunt needle. Continuously irrigate the applied area with
sterile ACSF or Ringer’s solution.
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17.

18.

19.

20.

21.
22.

23.

24,

25.

Bleeding from disrupted vasculature is normal; increase irrigation rates to maintain visibility within the
column.
As the desired imaging area is approached, expose the imaging area by aspiration with a fine
29-gauge needle.
Under optimal conditions, a thin layer of tissue remains overlying the cells of interest, to minimize direct
mechanical tissue damage from aspiration. In the hippocampal preparation, the overlying corpus callo-
sum can be readily identified by its stereotyped white matter tract patterns.
Minimize bleeding from the sides of the aspirated column by following applications of saline
irrigation and aspiration with 5-sec pause intervals to allow clot formation.
Gel foam may be applied to control bleeding. Take care not to allow a clot to form over the imaging area.

(Optional) Examine animal for fluorescence labeling, using a low-magnification long working
distance objective. (See Imaging Session below.)

Gradually insert a closed-end glass guide tube into the aspirated column. Lower the guide tube
until it is in contact with the distal tissue regions. Check that neither air pockets nor bleeding
regions are present under the guide tube. If necessary, irrigate with buffer, and repeat guide
tube insertion.

The tissue should be visible on inspection through the guide tube with a stereomicroscope.
Suction any liquids that are present on the cyanoacrylate layer.

Apply melted agarose (~1.5%) to the sides of the guide tube, filling gaps between skull and the
guide tube. Allow agarose to harden. Remove excess agarose by dicing with a scalpel blade.

Apply a layer of dental acrylic over all of the exposed skull and sides of the guide tube. Affix a
metal connection bar approximately parallel to the plane of the guide tube surface. The distal
end of the bar must be at least 1 cm away from the guide tube to prevent obstruction during
imaging. Wait 10 min for the acrylic to harden.

Affix a piece of flexible tape or adhesive dressing over the guide tube. This will prevent dirt from
entering the tube.

Allow the animal to recover from anesthesia. Return mouse to a clean home cage, and maintain
heating until righting reflex is shown. Administer analgesics (e.g., buprenorphine or carprofen)
as necessary.

Imaging Session (>30 min)

1096

26.

27.

28.

29.

Anesthetize mice with isoflurane gas (2.0%-2.5%; mixed with 2-L/min oxygen) or interper-
itoneal injection of ketamine (75 mg/kg) and xylazine (15 mg/kg). Assess depth of anesthesia
by monitoring toe pinch withdrawal, eyelid reflex, and respiration rate.

Secure animal into a position suitable for imaging. Use appropriate adaptors to clamp the metal
connection bar. Maintain body temperature at 37°C with a heating blanket. Apply ophthalmic
ointment to the eyes as necessary.

Insert the microendoscope probe into the guide tube. Remove protective tape to expose the
guide tube. Examine the guide tube for any dirt particles. If necessary, deliver H,O into the
guide tube, and rinse. Using air suction through a 25-29-gauge blunt needle, remove all fluid
from the guide tube.

Take care not to damage the bottom face of the guide tube with excess pressure.
Using an eyepiece and bright-field illumination, focus the microscope objective onto the

proximal microendoscope surface. Align the microendoscope to the optical axis of the micro-
scope by adjusting the clamp orientation.

Under bright-field illumination, a well-aligned microendoscope will appear circular, not elliptical (which
would indicate tilt relative to the optical axis).
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If available, use one-photon fluorescence imaging to locate the desired tissue region. Use the
minimal intensity of light necessary to illuminate the tissue. Typically, one gradually adjusts the
focal plane of the microscope objective upward (i.e., away from the specimen), assuming that
the tissue plane of interest is located closer to the face of the micro-optical objective than to the
microendoscope probe’s design working distance. Optionally, switch to the two-photon fluo-
rescence mode.

Parameters for one-photon imaging:

® Excitation filter: Approximately 470/40 nm for fluorescein-conjugated dextrans (for blood-flow
imaging), green fluorescent protein (GFP) and yellow fluorescent protein (YFP)

® Emission filters: Approximately 525/50 nm for fluorescein-conjugated dextrans, GFP, and YFP

® Images/frame rate: 512 x 512 pixels at 100 Hz with a high-speed electron-multiplying charge-coupled
device (CCD) camera (e.g., iXon DU-897E, Andor Technology), or 1392 x 1040 pixels with a cooled
CCD camera (e.g., Coolsnap HQ, Roper Scientific)

e Recording duration: Typically 30-40 sec for a given field of view
Parameters for two-photon imaging:

e FExcitation wavelength: Approximately 800 nm for fluorescein-conjugated dextrans in vascular
imaging, ~920 nm for GFP and YFP

e Excitation power at sample surface: Always <25 mW for tissues proximal to the microendoscope, more
distal tissues require greater power

® Images/dwell times: 512 x512 pixels (typically ~0.8—4 pusec per pixel or as permitted by tissue
motion). For high-resolution imaging, multiple images can be acquired and can be averaged, after
motion correction, to produce an improved image.

e Section/stack (3D imaging): Approximately 5—10-um axial spacing for GRIN singlets and doublets that
have ~10-um axial resolution, 1-2.5-um axial spacing for high-resolution microlenses

e Recording duration: Typically 510 min for a given field of view

See Troubleshooting.

Interchange microendoscope probes as needed without displacing the animal by using suction
to remove the microendoscope from the glass guide tube.

See Troubleshooting.

At the end of the experiment, clean microendoscopes by rinsing and gentle scrubbing with H,O
and lens paper. Sacrifice animal as appropriate for post hoc histological examination.

Problem (Step 30): There is excessive tissue motion during imaging.
Solution: Consider the following:

1.

2.

Most commonly observed tissue motions are caused by breathing rhythms. First, check the
depth of anesthesia during imaging. Second, adjust the head position relative to the animal’s
trunk to facilitate unconstrained breathing while providing modest mechanical decoupling of
the head from motions of the trunk.

Another common cause of tissue motion is an excess gap between the tissue and the end of the
guide tube; this is the fault of either an improper guide tube placement during the surgery or
any swelling that occurred then and later subsided. As the brain tissue stabilizes, the guide tube
may no longer be optimally positioned for the desired imaging experiment.

Reducing the overall duration of surgery, adjusting the dosage of anti-inflammatory agents, and
decreasing the potential heating of the tissue during skull drilling all generally improve exper-
imental quality.
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Problem (Step 31): Image quality degrades during image acquisition.
Solution: Consider the following:

1. Clean and inspect the microendoscope, and replace it as necessary. Excessive laser power
focused to surfaces of the microendoscope can result in damage to the glass. When this
occurs, background photon levels in the image typically increase. Inspection of the micro-
endoscope with an epifluorescence microscope will reveal autofluorescent patterns in which
laser scanning occurred on the glass surface.

2. Image degradation may be an indication of cellular damage. During imaging of subcellular
structures such as dendrites or axons, blebbing may appear as well as general fading of
fluorescence in the scanned regions across the imaging sessions. In such cases, use lower
intensity illumination.

3. As an alternative to acquiring a single image at a higher illumination power, averaging of
multiple images each taken at a faster acquisition speed and lower power may also improve
image quality.

DISCUSSION

Optical microendoscopy is suited for cellular level imaging deep within tissue in live animals or
humans. Researchers can choose among a wide variety of microendoscope probe designs to select
those best matched to their needs. For the combined acquisition of high-speed videos and 3D image
stacks from the same specimen, it is useful to have a microscope that allows online toggling between
one-photon fluorescence and laser-scanning imaging (Jung et al. 2004) (Fig. 1A). Laser-scanning
second-harmonic generation microendoscopy can generally be performed on any microscope intend-
ed for intravital two-photon imaging by an appropriate choice of emission filter (Llewellyn et al. 2008).
Opverall, microendoscopy is a flexible technique that can be used with multiple modes of contrast
generation, at different tissue depths, and with a wide variety of imaging parameters. In the brain, this
flexibility has enabled the examination of intracellular calcium dynamics, microcirculatory flow, and
neuronal morphology. Because the microendoscope is conceptually, at core, an optical relay, any
fluorescent marker that performs well under conventional one- or two-photon fluorescence micros-
copy will generally perform comparably well under microendoscopy in similar optical conditions.
Figure 2 shows examples of images acquired by fluorescence microendoscopy in live mice.

FIGURE 2. Images acquired by fluorescence microendoscopy in live mice. (A) GFP-labeled pyramidal neurons in CA1
hippocampus imaged with a T-mm singlet probe. Scale bar, 50 um. (B) High-resolution image of CA1 hippocampal
dendritic spines acquired using an LaSFN9 high-resolution probe. Scale bar, 5 pm. (C) GFP-labeled neurons in the
brainstem’s external cuneate nucleus imaged with a T-mm doublet probe of 20-mm length and a 0.75-pitch relay.
Scale bar, 50 pm. (D) Fluorescein-labeled vasculature in CA1 hippocampus imaged with a 0.5-mm singlet probe.
Scale bar, 50 pm. (E) GFP-labeled pyramidal neurons in CA1 hippocampus imaged with a 1-mm singlet probe. Scale
bar, 50 pm. A-C and E are 2D projections of 3D stacks acquired by two-photon microendoscopy. These stacks were
composed of 108 image slices acquired at 2-pm axial separation between adjacent slices for A; nine images with 1.6-
pm axial separation for B; 50 images with 0.43-um axial separation for C; four slices taken at 4.2-pum axial separation
for E. D was obtained by one-photon microendoscopy and shows the standard deviation image of a high-speed video
sequence of blood flow, which is a postprocessed image that highlights blood vessels.
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Some deep structures may be accessed by conventional microscope optics. In one strategy, more
invasive aspiration of the tissue allows direct access to the tissue of interest (Mizrahi et al. 2004). A
wide column of tissue must be removed to prevent blocking light to and from the specimen if imaging
with a high NA is to be achieved. The applicability of this technique seems limited because deeper
structures require surgery and aspiration that are substantially more invasive.

Another strategy for deep imaging extends the penetration depth of conventional two-photon
microscopy to tissues as deep as 1 mm below the surface, as reviewed in Wilt et al. (2009). To achieve
this, several methods exist to improve fluorescence generation, including the use of illumination
sources with higher pulse energies and longer wavelengths and adaptive optics to improve the focusing
of light in the tissue. In addition to providing a relatively noninvasive means of imaging structures at
intermediate depths, such as the infragranular layers of the neocortex, these improvements are also
compatible with microendoscopy. However, because of the exponential increase with depth of a
photon’s probability of being scattered, these methods for extending the reach of conventional
light microscopy are unlikely to reach the tissue depths of several millimeters to ~1 cm that have
already been demonstrated by microendoscopy.
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