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Neural activity can be captured by state-of-the-art optical imaging methods
although the analysis of the resulting data sets is often manual and not
standardized. Therefore, laboratories using large-scale calcium imaging eagerly
await software toolboxes that can automate the process of identifying cells
and inferring spikes. An algorithm proposed and implemented in a recent paper
by Mukamel et al. [Neuron 63, 747-760 (2009)] used independent component
analysis and offers significant improvements over conventional methods. The
approach should be widely applicable, as tested with data obtained from the
mouse cerebellum, neocortex, and spinal cord. The emergence of analysis tools
in parallel with the rapid advances in optical imaging is an exciting development
that will stimulate new discoveries and further elucidate the functions of neural
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Spikes are the language of the brain and
the means by which neurons communicate. A
precise, quantitative description of spike trains
from a single sensory neuron can tell us about
how the external world may be encoded by
neural activity (Rieke et al., 1996). However,
neurons do not work alone. Simultaneous re-
cordings of many neurons will let us verify in-
tuitions extrapolated from single-neuron stud-
ies and develop population models. Exploring
such population code with multi-electrode re-
cording has led to exciting insights on the
encoding strategies employed by neuronal
populations (Mazor and Laurent, 2005; Pillow
etal.,2008).

Large-scale calcium imaging is an emerg-
ing approach for measuring population neural
activity at single cell resolution (Kerr and
Denk, 2008). Spikes can be inferred by an
increase in intracellular calcium, which is opti-
cally probed with fluorescent calcium indica-
tors. Visualization of large neuronal popula-
tions in vivo is made possible by multicell
bolus loading of inorganic dyes (Stosiek et al.,
2003) or viral injection of genetically engi-
neered proteins. Although deep-tissue optical
microscopy is slow, it is compatible with fluo-
rescent cell-type markers (Nimmerjahn et al.,

2004; Kwan et al., 2009) and can reveal spatial
clustering of active neurons (Ohki ef al., 2005;
Busche et al., 2008). Moreover, genetically en-
coded calcium indicators allow for functional
imaging of the same neurons over weeks
(Mank et al., 2008; Tian et al., 2009), opening
up opportunities for time-lapse functional plas-
ticity experiments.

Although large-scale calcium imaging has
been used in many brain regions and model
organisms, suitable and standardized data
analysis methods are often not available. At
the most basic level, image analysis is a two-
step process. First, identify pixels within cell-
like structures as a region of interest (ROI).
Time-lapse fluorescence traces associated with
each ROI are extracted from the raw images.
Second, translate the fluorescence changes into
spike times or firing rates. For a human opera-
tor, the first step is a dull but possible task,
whereas a reliable second step is impossible
by manual methods, leading to a recent boom
in spike inference algorithms. Most of these
algorithms rely on the fact that somatic fluores-
cence change due to a single spike is filtered
by a slower exponential decay function. One
method, template-matching and deconvolu-
tion (Kerr et al., 2005; Yaksi and Friedrich,
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2006), works well for sparse activity when interspike inter-
vals are large compared to the fluorescence decay time
constant. More sophisticated algorithms (Sasaki et al., 2008;
Vogelstein et al., 2009) may address this issue and make
spike inference equally reliable for neurons with high firing
rates.

Where does this leave the initial step of cell sorting? The
fluorescence signal at each pixel can be quite noisy because
of shot noise and the usual need for fast imaging frame rate.
High basal fluorescence tends to suggest a cell body and
sharp signal increase implies neural activity; these are signa-
tures that the human eyes can see but not for simple image
segmentation approaches based on binary mask or cross-
correlation. This calls for approaches that harness the statis-
tical features unique to large-scale calcium image data sets,
such as the algorithm recently proposed and implemented by
Mukamel and Nimmerjahn in the laboratory of Schnitzer
(Mukamel et al., 2009). The significance of their study is that
it completely automates and standardizes the analysis por-
tion, from fluorescence to spike trains, of large-scale calcium
imaging experiments.

A QUANTITATIVE APPROACH FOR AUTOMATIC

CELL SORTING

The key insight of Mukamel ef al. was that the spatial and
temporal characteristics of large-scale calcium imaging data
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sets can be used to find the locations of cells. Regions likely
to be cells would contain groups of neighboring pixels with
fluorescence intensities that are different from the rest of the
image; therefore there is a spatial sparseness. Moreover,
spikes are accompanied by large, distinct fluorescence peaks
occurring at only certain image frames, leading to a temporal
sparseness.

The goal then becomes identifying the regions that sat-
isfy these sparseness criteria and the algorithm of Mukamel
et al. uses independent component analysis (ICA). A simple
way to think about ICA is to consider the cocktail party prob-
lem where there is only one set of ears (detectors) and many
conversations going on (signal and noise sources). How do
you unmix the sound to retrieve the true signal? Assuming
that each detector is sensing a weighted sum of independent
signal and noise sources, ICA untangles the problem and
provides an optimal estimate of the various sources (Bell
and Sejnowski, 1995; Hyvirinen and Oja, 2000). In neuro-
science, ICA has been used theoretically to argue for a
sparse coding scheme for encoding natural images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997).
Practically, ICA can isolate components of brain activity
from multisite electroencephalography (EEG) recordings
(Makeig et al., 1997).

One shortcoming of ICA is that the algorithm does
not know the number of signal sources and is prone to error
when many detectors are present. Mukamel’s algorithm got
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Figure 1. Automated cell sorting and spike train reconstruction from large-scale calcium imaging data. (A) The workflow of the
automated analysis algorithm proposed and implemented by Mukamel et al. (2009). (B) From calcium imaging data recorded in the mouse
cerebellum in vivo, the algorithm automatically selected spatial and temporal filter pairs with morphologies and transients expected for
individual Purkinje dendrites and Bergmann glia. (C) Simultaneous calcium imaging and single-unit recording confirmed that the extracted
fluorescence transients correlated well with spike trains recorded from the two cell types. [Reprinted from Mukamel et al. (2009), with

permission from Elsevier].
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around this problem by starting with a principal component
analysis (PCA) step. The PCA, by finding and retaining only
the spatiotemporal components that exhibit the largest vari-
ance, reduces the dimensionality of the data set prior to
the ICA. Furthermore, if neural activity is correlated, I[CA
can lump together regions containing multiple cells, so a
post-ICA segmentation step was added to split spatially
disjoint independent components. These three steps plus
a template-matching spike inference step formed the basis
for the automated image analysis of Mukamel et al

[Fig. 1(A)].

ALGORITHM APPLIED TO REAL DATA SETS

How well does the ICA algorithm of Mukamel et al. work?
Using the data from imaging the cerebellum of running,
head-restrained mice (Nimmerjahn ef al., 2009), the algo-
rithm was able to identify the regions that correspond to
Purkinje dendrites and Bergmann glia [Fig. 1(B)]. This
was an impressive feat because unlike in the neocortex, the
cerebellar structures are overlapping and have low basal
fluorescence [see the Supplementary Movies in Nimmerjahn
et al. (2009)]. The sorted regions had clean and distinct cal-
cium transients with clear electrophysiological correlates
[Fig. 1(C)]. To quantify the effectiveness of the algorithm,
Mukamel et al. varied two variables in simulated data:
the signal-to-noise ratio and the number of cells. In most
cases, ICA outperformed manual ROI analysis. However,
in extreme cases where the signal-to-noise ratio is very low
(<0.1) or when there are too many cells (>200), errors of the
ICA algorithm could suddenly increase.

One significant benefit of ICA is that noise sources are
treated as independent components, even if they share the
same pixels as the signal sources. As a result, motion arti-
facts in the extracted fluorescence signals were mitigated.
This will be increasingly useful as calcium imaging moves
toward in vivo experiments in awake animals (Dombeck
et al., 2007; Flusberg et al., 2008; Murayama et al., 2009;
Sawinski et al., 2009). More importantly, spatially over-
lapping Purkinje dendrites and Bergmann glia in the cerebel-
lum can be identified as separate signal sources [Fig. 1(B)].
In other cases, when overlapping is undesirable, such
as when neuropil is contaminating somatic fluorescence
signals in the neocortex, ICA can better estimate the true
signals.

A good algorithm should be applicable to imaging data
sets obtained from other brain regions. For this purpose,
I tried the ICA algorithm, generously provided as Supple-
mentary Materials in Mukamel ef al. (2009), on data ob-
tained from neocortex and spinal cord imaging experiments.
The neocortex data were recorded from the visual cortex
of anesthetized mice [Alitto and Dan (2009), unpublished
data] and contained cells with highly correlated activity. The
ICA algorithm was able to automatically identify >90%
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Figure 2. Automated cell sorting applied to data from the
mouse neocortex and spinal cord. (A) The data set consists of
1000 time-lapse image frames of neocortical cells labeled via multi-
cell bolus loading [H Alitto and Y Dan (2009), unpublished data].
Cell bodies were initially identified manually as ROls. In most cases,
the ICA algorithm identified >90% of the cell in the field of view,
although sometimes ICA missed cells with low basal fluorescence
or very sparse activity. Moreover, the set of cells selected by the
ICA algorithm could vary slightly depending on the number of prin-
cipal components used. (B) Spinal interneurons were rhythmically
bursting during fictive locomotion in mouse spinal cord. The ICA
algorithm was able to pick up a subset of the interneurons that have
the largest fluorescence changes.

of the active cortical cells [Fig. 2(A)], although it missed a
few cells with low basal fluorescence or ultrasparse activity.
The mouse spinal cord data posed a greater challenge: spinal
interneurons had high firing rates during fictive locomotion in-
duced by neurotransmitters (Kwan et al., 2009). Even in this
case where the temporal sparseness condition was likely untrue,
the algorithm managed to identify a subset of the active neurons
[Fig. 2(B)].

CHALLENGES AND OUTLOOK

In the current algorithm, the detected set of cell locations
can depend on the initial parameters such as the number of
principal components used [Fig. 2(A)]. The consistency
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Table I. Some algorithms used for analyzing large-scale calcium imaging data.

Usage Principle

References

Automated cell sorting Cross-correlation

Independent component analysis

Spike inference Template-matching filters

and deconvolution
Clustering
Supervised learning
Particle filter

Hidden Markow chains

Lucas—Kanade

Motion correction

Multiresolution nonlinear
least-square optimization

Ozden et al. (2008)
Mukamel et al. (2009)

Kerr et al. (2005), Yaksi and Friedrich (2006),
and Greenberg and Kerr (2009)

Sato et al. (2007)
Sasaki et al. (2008)
Vogelstein et al. (2009)

Dombeck et al. (2007)
Greenberg and Kerr (2009)

Thevenaz et al. (1998)
and TurboReg plug-in for ImageJ

seems to improve for images with small field of view, which
agrees with the calculation by Mukamel et al. of fidelity as a
function of the number of cells. This trend suggests a pos-
sible strategy of breaking the field of view into smaller parts
and recombining following ICA. The ICA algorithm would
operate in a stable regime and fidelity could be further im-
proved by checking that the same cells are sorted from re-
dundant, smaller images.

A general concern for large-scale calcium imaging is that
the spikes or firing rates are inferred and not directly mea-
sured. Combined imaging and electrophysiological measure-
ments have shown that in most experiments, somatic calcium
is directly related to spiking activity (Kerr ef al., 2005; Sato
et al., 2007; Kwan et al., 2009; Mukamel et al., 2009; Tian
et al., 2009) but in certain cases this spike-calcium rela-
tionship may not hold true (Lin et al., 2007; Moreaux and
Laurent, 2007). Some of the unexpected fluorescence signals
could be due to neuropil contamination, which would be re-
duced by employing the ICA algorithm. Nonetheless, when
experimenting in new biological contexts, the spike-calcium
relationship must be validated.

In spite of some minor issues, the ICA algorithm of
Mukamel et al. represents an important step toward the re-
construction of multicell spike trains from large-scale cal-
cium imaging data. In the next few years, complete software
toolboxes including cell sorting and spike inference algo-
rithms (Table I) should provide a one-stop solution for the
imaging community. A standardized analysis framework will
enable fast and reliable optical readout of multineuron activ-
ity, further making the case for optical imaging to be a pre-
ferred method for cracking the neural code.
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